Página 1 de 1

Limite de várias variáveis

MensagemEnviado: Seg Mai 05, 2014 04:06
por braddock
Estou tendo um problema no seguinte limite, x e y tendem a 0, sei que o limite vai dar zero, mas não consigo resolver... se alguém conseguir me ajudar, ficaria grato

xsin(\frac{1}{x^2+y^2})

Re: Limite de várias variáveis

MensagemEnviado: Seg Mai 05, 2014 10:59
por e8group
Dica :

Limite de funções da forma que ( u * v ) é zero sempre que uma delas é limitada e o limite da outra é zero .

Sejam h,f, g : A \subset \mathbb{R}^n \mapsto \mathbb {R} . Defina h(x_1,\hdots , x_n) = h(X) =f(x_1,\hdots , x_n) \cdot g(x_1,\hdots , x_n) = f(X) \cdot g(X) . Suponha g limitada , isto é , existe algum M > 0 tal que |g(X)| \leq M para qualquer que seja o vetor X em A .

Se para algum X_0 \in A', temos \lim_{X \to X_0} f(X) = 0 então \lim_{X \to X_0} h(X) = 0 .
(A' representa o conjunto dos ponto de acumulação de A)

De fato ,

\lim_{X \to X_0} h(X) = 0  \iff   \forall \epsilon > 0  , \exists \delta(\epsilon) > 0     (*) tal que se

0 < || X - X_0|| < \delta então |h(X) | < \epsilon    (**) .

Segue-se que

|h(X) | = |f(X)| |g(X) | < |f(X)| M .

Além disso , por hipótese \lim_{X \to X_0} f(X) = 0 , o que significa que dado \epsilon_1 > 0 existe um \delta_1 > 0 (correspondente) tal que

0 <|| X - X_0|| < \delta(\epsilon_1) implica |f(X)| < \epsilon_1 .

Logo ,

0 <|| X - X_0|| < \delta(\epsilon_1) implica |h(X)|= |f(X)| |g(X) | \leq M|f(X)| <  M \epsilon_1 .

Como a relação acima é verdadeira para qualquer \epsilon_1 > 0 , dado \epsilon > 0 podemos tomar \epsilon_1  =  \frac{\epsilon }{M} e com isso temos

0 <|| X - X_0|| < \delta(\epsilon_1) implica |h(X)|= |f(X)| |g(X) | \leq  M|f(X)| <  M \epsilon_1 =  \epsilon .

Ou seja, dado \epsilon > 0 , tomando \delta = \delta(\epsilon_1) conseguimos um \delta > 0 tal que se (o lardo esquerdo da implicação é verdeiro o lado direito também o é )

0 <|| X - X_0|| < \delta \implies    |h(X)| < \epsilon .

É o que exatamente diz em (*) , (**) .

Agora com absoluta certeza podemos afirmar que \lim{X\to X_0} h(x) = 0 .

Espero que ajude .

Para exemplificar

Seja h(x_1,\hdots , x_n) =  h(X) =  \frac{ (\sum_{i=1}^k x_i^2 )(epx(\sum_{i=1}^n x_i )  - 1 )}{\sum_{i=1}^n x_i^2} (onde : k < n )

Temos que \lim_{X \to  O_{\mathbb{R}^n }}  h(X) = 0 ( onde O_{\mathbb{R}^n = vetor nulo do R^n ) , pois

como k < n , então \sum_{i=1}^k x_i^2  \leq     \sum_{i=1}^n x_i^2 e assim

\frac{  \sum_{i=1}^k x_i^2}{\sum_{i=1}^n x_i^2} \leq 1   , \forall X \neq  O_{\mathbb{R}^n . Seja g(X) = \frac{ \sum_{i=1}^k x_i^2}{\sum_{i=1}^n x_i^2} e f(X) = exp(\sum_{i=1}^n x_i^2) -  1 .

Temos que g é limitada (por 1) e o limite de f é zero quando X tende ao vetor nulo , logo o limite de h também é zero .

Mais um exemplo ...


Se h(X) = (x_1 + \hdots  + x_n )^n  sin((x_1 + x_2 + \hdots +  x_n )^{- e^2 }) . Temos

\lim_{X \to O_{\mathbb{R}^n} \ } h(X) = 0 (Pq ??)

Espero que ajude .

Re: Limite de várias variáveis

MensagemEnviado: Seg Mai 05, 2014 22:17
por braddock
Ajudou muito sim, muito obrigado.