• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Algebra Linear: Espaço Vetorial

Materiais sobre Álgebra.
Utilize a seção de pedidos para outros que não estejam disponíveis.

As fontes dos arquivos serão diversas e deverão ser citadas sempre que possível, mantendo totalmente os créditos dos respectivos autores.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Algebra Linear: Espaço Vetorial

Mensagempor Caeros » Dom Nov 14, 2010 17:39

Olá caros;
Para que eu verifique se os espaços abaixo vetoriais V são realmente espaços vetoriais acredito que se deve aplicar as oito propriedades que definem o espaço vetorial mas realmente tenho dúvidas de como se faz isso, alguém pode me ajudar? :y:

1.V={\Re}^{3},({x}_{1},{y}_{1},{z}_{1})+({x}_{2},{y}_{2},{z}_{2})=({x}_{1}+{x}_{2},{y}_{1}+{y}_{2},{z}_{1}+{z}_{2});
\alpha(x,y,z)=(\alpha x,\alpha y,\alpha z).

2.V=\left({\begin{pmatrix}
   a & -b  \\ 
   b & a 
\end{pmatrix};a,b \in\Re\right),operações usuais de {M}_{2}(\Re).

3.V={(x,y)\in{\Re}^{2};3x-2y=0},operações usuais de {\Re}^{2}
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Algebra Linear: Espaço Vetorial(tentativa1)

Mensagempor Caeros » Seg Nov 15, 2010 17:40

Me ajudem! :coffee:
Tentativa para a resposta do item 1:
primeiro que se trata de um sistema de coordenadas dado por três retas orientadas
({\Re}^{3});
Podemos representar os vetores dados por u=({x}_{1},{y}_{1},{z}_{1}) e
v=({x}_{2},{y}_{2},{z}_{2})
então u + v = ({x}_{1}+{x}_{2},{y}_{1}+{y}_{2},{z}_{1}+{z}_{2})
e \alpha .v = (\alpha {x}_{2},\alpha {y}_{2},\alpha {z}_{2})
como indicadas nas operações.
Como são retas orientadas têm origem fixada para o espaço representada pelo vetor nulo (0, 0, 0).
Acho que seria o suficiente para verificar que sim é espaço vetorial ou temos que verificar todas as oito propriedades? Porque se uma delas não der certo então não é espaço vetorial, preciso saber!
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Algebra Linear: Espaço Vetorial

Mensagempor andrefahl » Ter Nov 16, 2010 00:13

Meu caro, é o seguinte

para verificar se é realmente espaço vetorial vc tem que verificar os oito axiomas,
mas para dizer que não é espaço basta apenas dar um contra exemplo.

esqueça esse negocio de retas orientadas nesse momento,
o que realmente interessa nesses problemas é a soma definida para dois elementos
e a muliplicação por um escalar.

com isso vc verifica os oito axiomas.

a soma sejam u, v pertencentes a R^3 t.q u=(x_1,y_1,z_1) e v = (x_2,y_2,z_2)

entaum u + v = (x_1,y_1,z_1) + (x_2,y_2,z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2) = (x_2 + x_1, y_2 + y_1, z_2 + z_1) = (x_2,y_2,z_2) + (x_1,y_1,z_1) = v + u para qq u ,v pertencente a R^3 ta ai o da soma =D

no caso de vetor nulo nesse problema do R^3 vc tem que

0. u = 0_v onde 0_v é o vetor nulo. é uma propriedade que 0 vezes o qq elemento eh o vetor nulo.
e nao pq saum retas e passam pela origem.. isso naum seria uma boa justificativa e em outros espaços vc naum
conseguiria mostra isso , por exemplo nos polinomios =)


dai 0.u = 0 (x_1,y_1,z_1) = (0x_1, 0y_1,0z_1) = (0,0,0) (lembrando que a multiplicaçao por escalar eh definida no começo, mas aqui é a op usual) ta ai o vetor nulo...
os outros ficam por sua conta =D

att


ps.: no item 3 as op usuais naum saum apenas dos R?
andrefahl
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Qui Out 28, 2010 18:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Física - UNICAMP
Andamento: cursando

Re: Algebra Linear: Espaço Vetorial

Mensagempor Caeros » Sáb Nov 27, 2010 17:33

Valeu andrefahl!
então fica assim:

u+0=\left({x}_{1},{y}_{1},{z}_{1} \right) + (0, 0, 0)= \left({x}_{1} + 0,{y}_{1} + 0,{z}_{1} + 0 \right) = \left({x}_{1},{y}_{1},{z}_{1} \right) = u


-u=- \left({x}_{1},{y}_{1},{z}_{1} \right)=\left(-{x}_{1},-{y}_{1},-{z}_{1} \right) então u+(-u)=\left({x}_{1}-{x}_{1},{y}_{1}-{y}_{1},{z}_{1}-{z}_{1} \right)=(0, 0, 0)

Se\alpha \in\Re:\alpha\left(u+v \right)=\alpha\left|\left({x}_{1},{y}_{1},{z}_{1}\right)+\left({x}_{2},{y}_{2},{z}_{2}\right)\right|=
\alpha\left({x}_{1},{y}_{1},{z}_{1} \right)+\alpha\left({x}_{2},{y}_{2},{z}_{2} \right)=
\alphau+ \alphav
e assim vai... :y:
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Algebra Linear: Espaço Vetorial

Mensagempor andrefahl » Sáb Nov 27, 2010 18:16

É issae !!!

mas não esqueça, são 8

e a segunda é da associativa da soma

u+(v+w)=(u+v)+w em R^3 é muito facil verificar
isso.

Faz esse que é mais legal e também pode ajudar a ver melhor as propriedades.

Considere V = R com as operações:

\oplus : R \times R \rightarrow R
(u,v)\mapsto u\oplus v = u+v+2

e

\otimes : R \times R \rightarrow R
(\alpha,v)\mapsto \alpha\otimes v = \alpha v+2(\alpha -1)

ai simplesmente ta escrito que o espaço vetorial é R e esse espaço tem
essas novas operações.
entao vc não teria mas 1 + 1 = 2 vc tem 1 + 1 = 1+ 1+ 2 = 4
=D
o 0 vetor tb é outro =)

tenta faze é bem legalzinho d provar =D
andrefahl
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Qui Out 28, 2010 18:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Física - UNICAMP
Andamento: cursando


Voltar para Álgebra

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?