• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Qual o número mínimo de funcionários?

Materiais sobre Álgebra.
Utilize a seção de pedidos para outros que não estejam disponíveis.

As fontes dos arquivos serão diversas e deverão ser citadas sempre que possível, mantendo totalmente os créditos dos respectivos autores.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Qual o número mínimo de funcionários?

Mensagempor Therodrigou » Qui Jul 05, 2018 21:23

Em uma linha de produção há quatro máquinas que devem receber manutenção diariamente, duas máquinas que devem receber manutenção uma vez a cada dois dias e três máquinas que devem receber manutenção uma vez a cada três dias. Caso um funcionário consiga fazer a manutenção de duas máquinas por dia, o número mínimo de funcionários que deve ser alocado nessa linha de produção para a manutenção de todas essas máquinas é:

Não sei o gabarito.
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: Qual o número mínimo de funcionários?

Mensagempor Gebe » Sex Jul 06, 2018 11:25

Não sei como seria feito esta questão por forma mais algebrica, mas da pra resolver avaliando casos diferentes.
Como não foi mencionado o dia da ultima manutenção de cada maquina, podemos ter o melhor caso que seria:

Seja X cada maquina de manutenção de 1dia, Y as de 2dias e Z as de 3dias.
Em um periodo de 3dias todas maquinas devem ser revisadas.
1ºdia: X.X.X.X.Y1.Z1 são revisadas
2°dia: X.X.X.X.Y2.Z2 são revisadas
3°dia: X.X.X.X.Y1.Z3 são revisadas

Perceba que ao final do 3° dias todas foram revisadas e que em cada um dos dias 6 maquinas foram revisadas, ou seja, precisariamos de 3 funcionarios (MINIMO).
Vale ressaltar que este caso só é possivel pois pudemos escolher o dia que cada uma começou a passar por manutenção.
Um caso critico seria se todas começassem a manutenção no mesmo dia, ou seja, precisariamos de no minimo 5 funcionarios.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Qual o número mínimo de funcionários?

Mensagempor Therodrigou » Sex Jul 06, 2018 19:55

Vlw!
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando


Voltar para Álgebra

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)