• Anúncio Global
    Respostas
    Exibições
    Última mensagem

8/0+32-16/0 = 32 ou é uma indeterminação?

Materiais sobre Álgebra.
Utilize a seção de pedidos para outros que não estejam disponíveis.

As fontes dos arquivos serão diversas e deverão ser citadas sempre que possível, mantendo totalmente os créditos dos respectivos autores.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

8/0+32-16/0 = 32 ou é uma indeterminação?

Mensagempor Therodrigou » Dom Jun 24, 2018 16:44

Olá! a expressao abaixa tem solução?

8/0+32-16/0 = 32

ou é uma indeterminação?
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: 8/0+32-16/0 = 32 ou é uma indeterminação?

Mensagempor Gebe » Dom Jun 24, 2018 19:16

É uma indeterminação sim, porem se essa expressão é resultado de um limite de uma função (ex.: \lim_{x\rightarrow0}\frac{8}{x}+32-\frac{16}{x}), podemos tentar manipular a expressão para achar o limite. Vale destacar que 32 seria um resultado incorreto (em caso de limite), pois indeterminação do tipo 8/0 e -16/0 tendem a infinito e -infinito respectivamente.

Se tiver mais informações do exemplo que originou a duvida ficará mais facil para ajudar.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: 8/0+32-16/0 = 32 ou é uma indeterminação?

Mensagempor Therodrigou » Seg Jun 25, 2018 03:29

vlw! era uma questão de limite exatamente igual a essa:

lim x→0 8/0+32-16/0

que o resultado é 32, tbm não sei por quê.
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: 8/0+32-16/0 = 32 ou é uma indeterminação?

Mensagempor Gebe » Seg Jun 25, 2018 04:17

Ok, mas a questão é semelhante a que botei como exemplo? Se for, a resposta não é 32.
Ficaria assim:
\\
\lim_{x\rightarrow0}\frac{8}{x}+32-\frac{16}{x}\\
\\
\lim_{x\rightarrow0}\frac{8+32x-16}{x}\\
\\
\lim_{x\rightarrow0}\frac{32x-8}{x} = -\frac{8}{0}

Ou seja, o limite tende a -\infty
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: 8/0+32-16/0 = 32 ou é uma indeterminação?

Mensagempor DanielFerreira » Dom Jul 08, 2018 16:12

Therodrigou escreveu:vlw! era uma questão de limite exatamente igual a essa:

lim x→0 8/0+32-16/0

que o resultado é 32, tbm não sei por quê.


Parece-me que o resultado está incorreto!

Gebe escreveu:É uma indeterminação sim, porem se essa expressão é resultado de um limite de uma função (ex.: \lim_{x\rightarrow0}\frac{8}{x}+32-\frac{16}{x}), podemos tentar manipular a expressão para achar o limite. Vale destacar que 32 seria um resultado incorreto (em caso de limite), pois indeterminação do tipo 8/0 e -16/0 tendem a infinito e -infinito respectivamente.

Se tiver mais informações do exemplo que originou a duvida ficará mais facil para ajudar.


Não há indeterminação neste caso!

Gebe escreveu:Ok, mas a questão é semelhante a que botei como exemplo? Se for, a resposta não é 32.
Ficaria assim:
\\
\lim_{x\rightarrow0}\frac{8}{x}+32-\frac{16}{x}\\
\\
\lim_{x\rightarrow0}\frac{8+32x-16}{x}\\
\\
\lim_{x\rightarrow0}\frac{32x-8}{x} = -\frac{8}{0}

Ou seja, o limite tende a -\infty


Na verdade, a resposta é que não existe o limite, pois os limites laterais são distintos!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Álgebra

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D