• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida na Fatoração

Materiais úteis diversos serão referenciados ou digitalizados e compartilhados aqui.
Caso tenha interesse ou necessite estudar algum assunto específico, utilize este espaço para fazer o seu pedido.

Quando um colaborador possuir o material relacionado, ele será postado na seção de conteúdos diversos acima.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Dúvida na Fatoração

Mensagempor runksoneck » Sáb Fev 19, 2011 18:30

Como eu posso fatorar: x³-3x²+3x-1 e x^5-1
To com dificuldade com potências maiores que 2. Eu até consegui umas com 3, mas essa daí não está dando certo.
Obg.
runksoneck
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Fev 19, 2011 18:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Dúvida na Fatoração

Mensagempor LuizAquino » Sáb Fev 19, 2011 21:44

runksoneck escreveu:Como eu posso fatorar: x^3-3x^2+3x-1 e x^5-1


Para fatorar um polinômio de grau n, de modo geral você precisa descobrir as n raízes da equação a_nx^n + a_{n-1}x^{n-1}+\ldots+a_1x+a_0=0. A forma fatorada desse polinômio será a_n(x-x_n)(x-x_{n-1})\cdots(x-x_1)(x-x_0), onde x_i é cada uma das n raízes.

Exemplo 1
Para fatorar x^3-3x^2+3x-1, você precisa descobrir as 3 raízes da equação x^3-3x^2+3x-1=0. Nesse caso, é fácil notar que 1 é uma raiz. Basta substituir x por 1 nessa equação e você verá que ela é válida. Como 1 é uma raíz, você pode reduzir o grau desse polinômio para achar as outras duas raízes. Para isso, você pode dividir o polinômio por (x-1). Nesse caso você irá encontrar x^2-2x+1. Portanto, agora você tem que encontrar as raízes de x^2-2x+1=0. Facilmente você irá encontrar que as duas raízes dessa equação são x'=x''=1. Portanto, teremos que:

x^3-3x^2+3x-1 = (x-1)(x-1)(x-1) = (x-1)^3

Exemplo 2
Para fatorar x^5-1, você apenas precisa conhecer o produto notável a^n-b^n = (a - b)(a^{n-1}+a^{n-2}b + a^{n-3}b^2 + \ldots +  a^2b^{n-3} + ab^{n-2} + b^{n-1}):
x^5-1 = x^5-1^5 = (x-1)(x^4 + x^3 + x^2 + x + 1)

Observação
Você já deve ter percebido que vai precisar estudar como determinar as raízes de polinômios de qualquer grau. Além disso, você vai precisar estudar como se efetua a divisão entre polinômios.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dúvida na Fatoração

Mensagempor runksoneck » Ter Fev 22, 2011 09:57

Valeeeu cara, já to conseguindo resolver os exercícios da apostila. :-D
runksoneck
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Fev 19, 2011 18:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Pedidos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D