• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função

Materiais úteis diversos serão referenciados ou digitalizados e compartilhados aqui.
Caso tenha interesse ou necessite estudar algum assunto específico, utilize este espaço para fazer o seu pedido.

Quando um colaborador possuir o material relacionado, ele será postado na seção de conteúdos diversos acima.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

função

Mensagempor rosafma » Qui Set 16, 2010 20:55

Ache o domínio e a imagem da função: f(x)=1/x^2-x
rosafma
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Set 15, 2010 14:41
Formação Escolar: GRADUAÇÃO
Área/Curso: COMPUTACAO
Andamento: cursando

Re: função

Mensagempor Neperiano » Sex Set 17, 2010 13:53

Ola

Para resolver esta questão voce primeiro deve ver as restrições na conta, ou seja quais numeros voce não pode coloca, por exemplo

Existe 1/0, não então isto não pode acontece

Com isso concluimos que o dominio ou seja os valores de x que voce pode coloca é todos os reais menos o 0

Ja a imagem que seria os valores de f(x) podem ser qualquer valor, ou seja os Reais

Acho que isso

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: função

Mensagempor Molina » Sex Set 17, 2010 14:06

Boa tarde, Rosa e Maligno.

Acho que a função é dada por f(x)=\frac{1}{x^2-x}, ou seja, x^2-x \neq 0, com toda aquela parte no denominador e não apenas o x^2.

Sendo assim:

\Rightarrow x^2-x \neq 0 \Rightarrow x(x-1) \neq 0 \Rightarrow x \neq 0 e x \neq 1

Ou seja, o domínio é dado por: R- \{ 0,1 \}


Rosa, favor confirmar o resultado e nas próximas questões é sugerido fazer o uso do LaTeX, para evitar este tipo de ambiguidade.


Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Pedidos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.