Materiais úteis diversos serão referenciados ou digitalizados e compartilhados aqui.
Caso tenha interesse ou necessite estudar algum assunto específico, utilize este espaço para fazer o seu pedido.
Quando um colaborador possuir o material relacionado, ele será postado na seção de conteúdos diversos acima.
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por oeslle » Sex Nov 28, 2008 01:48
Gostaria de pedir se tiessem uma lista de exercicios de geometria espacial. Desde de piramides, cones, cilindros, esfera, troncos, inscrições e circunscrições dos mesmos.
obg pela atenção!
-
oeslle
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Out 16, 2008 22:34
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Molina » Seg Dez 01, 2008 00:41
oeslle escreveu:Gostaria de pedir se tiessem uma lista de exercicios de geometria espacial. Desde de piramides, cones, cilindros, esfera, troncos, inscrições e circunscrições dos mesmos.
obg pela atenção!
Boa noite Oeslle.
Eu tenho algum material sobre o que você solicita, só que está na forma de fotocópia. Vou tentar digitalizar essa semana e assim que possível disponibilizo aqui.
Abraços.
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por oeslle » Sex Dez 05, 2008 14:47
ok! obg!
aguardo!
-
oeslle
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Out 16, 2008 22:34
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Pedidos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Lista de Exercícios - 1 / 2004
por admin » Sáb Jul 21, 2007 05:36
- 0 Respostas
- 1344 Exibições
- Última mensagem por admin

Sáb Jul 21, 2007 05:36
Cálculo Numérico e Aplicações
-
- Gabarito Lista 1 de Exercícios - 2004
por admin » Sáb Jul 21, 2007 05:51
- 0 Respostas
- 1391 Exibições
- Última mensagem por admin

Sáb Jul 21, 2007 05:51
Cálculo Numérico e Aplicações
-
- MAE1511 - lista de exercícios - 2003
por admin » Ter Abr 22, 2008 22:35
- 0 Respostas
- 1767 Exibições
- Última mensagem por admin

Ter Abr 22, 2008 22:35
Estatística para Licenciatura I
-
- Derivada/Integral resolução lista exercícios
por dimas_ant » Dom Dez 22, 2013 13:33
- 0 Respostas
- 1443 Exibições
- Última mensagem por dimas_ant

Dom Dez 22, 2013 13:33
Cálculo: Limites, Derivadas e Integrais
-
- (Lista de cálculo a Ufba -2009.1) Máximos e mínimo
por jessicaaangels » Sex Abr 22, 2016 01:06
- 1 Respostas
- 987 Exibições
- Última mensagem por nakagumahissao

Dom Abr 24, 2016 00:49
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.