• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Lei de Biot Savart

FGE0270
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Lei de Biot Savart

Mensagempor Jumarp » Dom Jun 19, 2011 19:30

Gostaria d uma ajuda com exercicio



Uma espira quadrada de 10,0 centímetros de lado ésta
centrado no plano x-y. Ela carrega uma corrente de 10,0
mA no sentido horário, quando vista na
Direção +az. Encontre H (0, 0, 10cm).
Pelo solução do livro, a questão começa por aqui, no entanto gostaria de saber como ele chegou nesse resultado: Com os extremos de +a -a.
H= \frac{Ia\phi}{4\pi\rho}.\left[\frac{z}{\sqrt[]{{z}^{2}+}{\rho}^{2}} \right]
Em anexo segue a figura do desenho

Obrigada desde já
Você não está autorizado a ver ou baixar esse anexo.
Jumarp
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Fev 22, 2011 12:21
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Voltar para Eletricidade I

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}