• Anúncio Global
    Respostas
    Exibições
    Última mensagem

verificação espaço vetor.

MAT0134
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

verificação espaço vetor.

Mensagempor amr » Qua Abr 06, 2011 12:15

Oii, eu queria saber se como eu estou resolvendo o exercíco está correto. (:

Ex.: Seja V o conjunto dos pares ordenados de nº R. V não é espaço vetorial em relação a nenhum dos dois seguintes pares de operação:
a) (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) e k(x, y)=(x, ky);
b) (x1, y1) + (x2, y2) = (x1 + x2, 0) e k(x,y) = (kx, ky).
Verfique em cada caso, quais dos 8 axiomas não se verificam.

a) Como na adição ele aparentemente irá dar certo, decidi resolver pela Multiplicação. E ficou assim:

M1: (kl)(x,y) = ((kl) x, (kl)y) = (k (lx), k(ly)) = k ( x, ly) = ( x, kly).

M2: k((x1,y1) + (x2, y2)) = k (x1 + x2, y1+ y2) = (k(x1+x2) + k(y1+y2)) = ((x1+x2), (ky1+ky2)) = (x1, ky1) + ( x2, ky2).

M3: (k+l)(x,y) = ( (k+l)x, (k+l)y) = (kx+ lx, ky + ly) =( x, ky) + (x, ly).

M4: 1(x, y) = ( 1x, 1y) = (x, y)

Os axiomas M1, M2 e M3 não se verificam na letra a.

b) Aqui é ao contrário, a Adição é por onde decidi começar a verificação:

A1: (x1, y1) + (x2, y2) = (x1 +x2) + (y1 + y2) = (x1+ x2, y1+ y2) = ( x1, y1).

A2: ((x1, y1) + (x2, y2)) +( x3, y3) = ( (x1 + x2, y1 + y2) + (x3, y3)) = ( (x1 + x2) + x3, ( y1 + y2) + y3) = (x1 + x3, y1 + y3) =
(x3 + x1, y3 +y1) = (x3, y3) + ( x1, y1).

A3: (x,y) + (0,0) = ( x +0, y +0) = (x, y)

A4: (x1, y1) + ( -x1, -y1) = ( x1 -x1, y1- y1) = ( 0, 0).

Os aximoas A1 e A2 não se verficam.

é isso mesmo??? obrigada.
amr
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Mar 30, 2011 21:38
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Voltar para Introdução à Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?



cron