• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Espaço vetorial

MAT0134
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Espaço vetorial

Mensagempor amr » Sex Abr 01, 2011 15:30

Oii, então.. to precisando mto de ajuda!
eu já olhei alguns tópicos de espaço e subspaço vetorial (que me ajudaram mto) mas mesmo assim estou tendo dificuldade com um exercício que envolve números complexos... não sei como verificar os axiomas por causa da parte imaginária. :(
o exercício é o seguinte:
Seja V= {(x,y)| x,y \epsilon C}. Mostre que V é um espaço vetorial sobre R com a adição e multiplicação por escalares definida como:
I) (x1, y1) + (x2,y2) = (x1+x2, y1+y2), \forall (x1,y1) e (x2,y2) \epsilon V;
II) a (x,y) = (ax, ay), \forall a \epsilon R e \forall (x, y) \epsilon V.

Obrigada.
amr
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Mar 30, 2011 21:38
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Espaço vetorial

Mensagempor LuizAquino » Sex Abr 01, 2011 16:48

Como x e y são dois números complexos, temos que x = a + bi e y=c+di (onde i é a unidade imaginária).

No conjunto dos números complexos, nós definimos a soma x+y como sendo x+y=(a+c) + (b+d)i. Já o produto kx (com k um escalar), definimos como kx = ka + kbi.

Use essas duas definições padrões quando tiver que operar com os números complexos no exercício.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Espaço vetorial

Mensagempor amr » Ter Abr 05, 2011 15:01

Você poderia corrigir, então.. por favor. (:

I) A1: (x1,y1) + (x2, y2) = (X1+ x2) + (y1 + y2) = ( x1 + x2, y1 + y2) = (x2 +x1, y2 + y1) = (x2, y2) + (x1, y1).

A2: ((x1, y1) + (x2, y2)) + (x3, y3) = (( x1 + x2, y1 + y2) + (x3, y3) = ((x1 + x2) + x3, (y1 + y2) + y3) =
( x1 + (x2 + x3), y1 + (y2 + y3)) = (x1, y1) + ((x2, y2) + (x3, y3)).

A3: x + y = (a + bi) + (0 + 0i) = (a + 0) + (b+0)i = a + bi = x.

A4: x +y = x + (-x) = (a + bi) + (-a - bi) = (a-a) + (b-b)i = 0

II) sendo k e l \epsilon R:

M1: (kl)(x,y) = ( (kl)x, (kl)y) = ( k(lx), k(ly)) = k ( lx, ly) = k ( l (x,y)).

M2: (k + l)(x,y) = ( (k+l)x, (k+l)y ) = ( kx + lx, ky + ly) = (kx, ky) + (lx, ly) = k (x,y) + l(x,y).

M3: k ((x1, y1) + (x2,y2)) = k ( x1 + x2, y1 + y2) = (k (x1+x2), k (y1+ y2)) = (kx1 + kx2, ky1 +ky2) = (kx1, ky1) + (kx2, ky2) = k(x1, y1) + k(x2, y2).

M4: 1(x,y) = (1x, 1y) = (x,y).

Ou seja, o V é um Espaço vetorial sobre R.
amr
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Mar 30, 2011 21:38
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Espaço vetorial

Mensagempor Rosi7 » Sáb Mai 30, 2015 00:13

Arm, você tem certeza que é espaço? Pois assistir uns vídeos que dizia sobre uma regra a ser seguida e pela lógica realmente não é espaço e o gabarito está certo.
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Espaço vetorial

Mensagempor Rosi7 » Sáb Mai 30, 2015 00:16

amr escreveu:Oii, então.. to precisando mto de ajuda!
eu já olhei alguns tópicos de espaço e subspaço vetorial (que me ajudaram mto) mas mesmo assim estou tendo dificuldade com um exercício que envolve números complexos... não sei como verificar os axiomas por causa da parte imaginária. :(
o exercício é o seguinte:
Seja V= {(x,y)| x,y \epsilon C}. Mostre que V é um espaço vetorial sobre R com a adição e multiplicação por escalares definida como:
I) (x1, y1) + (x2,y2) = (x1+x2, y1+y2), \forall (x1,y1) e (x2,y2) \epsilon V;
II) a (x,y) = (ax, ay), \forall a \epsilon R e \forall (x, y) \epsilon V.

Obrigada.



Arm, tem um vídeo de um professor chamado Matusalém. Ele é ótimo!
Observe a sua questão. É só você aplicar as propriedades e ir seguindo a lógica.
ex: A1) u+v=v+u
i)u+V
(x1, y1) + (x2,y2) = (x1+x2, y1+y2)

ii) V+U=
(x2,y2) + (X1,y1) = (X2+X1, y2+ y1) Pela propriedade R1= Comutativa da adição a+b= b+a logo pode inverter a posição

temos: (x1+x2, y1+y2) que é igual a resposta de i)=ii) ou seja u+v=v+u.

Espero ter ajudado, desculpa qualquer coisa, ainda tenho minhas limitações ,mas pelo que entendi é só você seguir a regra. PS: Prove os outros A2, A3.. Não sei se vc conhece por A ou V.
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando


Voltar para Introdução à Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.


cron