• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Espaço vetorial

MAT0134
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Espaço vetorial

Mensagempor amr » Sex Abr 01, 2011 15:30

Oii, então.. to precisando mto de ajuda!
eu já olhei alguns tópicos de espaço e subspaço vetorial (que me ajudaram mto) mas mesmo assim estou tendo dificuldade com um exercício que envolve números complexos... não sei como verificar os axiomas por causa da parte imaginária. :(
o exercício é o seguinte:
Seja V= {(x,y)| x,y \epsilon C}. Mostre que V é um espaço vetorial sobre R com a adição e multiplicação por escalares definida como:
I) (x1, y1) + (x2,y2) = (x1+x2, y1+y2), \forall (x1,y1) e (x2,y2) \epsilon V;
II) a (x,y) = (ax, ay), \forall a \epsilon R e \forall (x, y) \epsilon V.

Obrigada.
amr
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Mar 30, 2011 21:38
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Espaço vetorial

Mensagempor LuizAquino » Sex Abr 01, 2011 16:48

Como x e y são dois números complexos, temos que x = a + bi e y=c+di (onde i é a unidade imaginária).

No conjunto dos números complexos, nós definimos a soma x+y como sendo x+y=(a+c) + (b+d)i. Já o produto kx (com k um escalar), definimos como kx = ka + kbi.

Use essas duas definições padrões quando tiver que operar com os números complexos no exercício.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Espaço vetorial

Mensagempor amr » Ter Abr 05, 2011 15:01

Você poderia corrigir, então.. por favor. (:

I) A1: (x1,y1) + (x2, y2) = (X1+ x2) + (y1 + y2) = ( x1 + x2, y1 + y2) = (x2 +x1, y2 + y1) = (x2, y2) + (x1, y1).

A2: ((x1, y1) + (x2, y2)) + (x3, y3) = (( x1 + x2, y1 + y2) + (x3, y3) = ((x1 + x2) + x3, (y1 + y2) + y3) =
( x1 + (x2 + x3), y1 + (y2 + y3)) = (x1, y1) + ((x2, y2) + (x3, y3)).

A3: x + y = (a + bi) + (0 + 0i) = (a + 0) + (b+0)i = a + bi = x.

A4: x +y = x + (-x) = (a + bi) + (-a - bi) = (a-a) + (b-b)i = 0

II) sendo k e l \epsilon R:

M1: (kl)(x,y) = ( (kl)x, (kl)y) = ( k(lx), k(ly)) = k ( lx, ly) = k ( l (x,y)).

M2: (k + l)(x,y) = ( (k+l)x, (k+l)y ) = ( kx + lx, ky + ly) = (kx, ky) + (lx, ly) = k (x,y) + l(x,y).

M3: k ((x1, y1) + (x2,y2)) = k ( x1 + x2, y1 + y2) = (k (x1+x2), k (y1+ y2)) = (kx1 + kx2, ky1 +ky2) = (kx1, ky1) + (kx2, ky2) = k(x1, y1) + k(x2, y2).

M4: 1(x,y) = (1x, 1y) = (x,y).

Ou seja, o V é um Espaço vetorial sobre R.
amr
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Mar 30, 2011 21:38
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Espaço vetorial

Mensagempor Rosi7 » Sáb Mai 30, 2015 00:13

Arm, você tem certeza que é espaço? Pois assistir uns vídeos que dizia sobre uma regra a ser seguida e pela lógica realmente não é espaço e o gabarito está certo.
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Espaço vetorial

Mensagempor Rosi7 » Sáb Mai 30, 2015 00:16

amr escreveu:Oii, então.. to precisando mto de ajuda!
eu já olhei alguns tópicos de espaço e subspaço vetorial (que me ajudaram mto) mas mesmo assim estou tendo dificuldade com um exercício que envolve números complexos... não sei como verificar os axiomas por causa da parte imaginária. :(
o exercício é o seguinte:
Seja V= {(x,y)| x,y \epsilon C}. Mostre que V é um espaço vetorial sobre R com a adição e multiplicação por escalares definida como:
I) (x1, y1) + (x2,y2) = (x1+x2, y1+y2), \forall (x1,y1) e (x2,y2) \epsilon V;
II) a (x,y) = (ax, ay), \forall a \epsilon R e \forall (x, y) \epsilon V.

Obrigada.



Arm, tem um vídeo de um professor chamado Matusalém. Ele é ótimo!
Observe a sua questão. É só você aplicar as propriedades e ir seguindo a lógica.
ex: A1) u+v=v+u
i)u+V
(x1, y1) + (x2,y2) = (x1+x2, y1+y2)

ii) V+U=
(x2,y2) + (X1,y1) = (X2+X1, y2+ y1) Pela propriedade R1= Comutativa da adição a+b= b+a logo pode inverter a posição

temos: (x1+x2, y1+y2) que é igual a resposta de i)=ii) ou seja u+v=v+u.

Espero ter ajudado, desculpa qualquer coisa, ainda tenho minhas limitações ,mas pelo que entendi é só você seguir a regra. PS: Prove os outros A2, A3.. Não sei se vc conhece por A ou V.
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando


Voltar para Introdução à Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?