• Anúncio Global
    Respostas
    Exibições
    Última mensagem

subespaço vetorial

MAT0134
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

subespaço vetorial

Mensagempor Neta Silva » Sex Mar 14, 2014 20:51

Mostrar que W = \{ (ax^2+bx+c) \in P_{2}; c=2a+b \} é um subespaço vetorial de P_2, o conjunto dos polinômios de grau menor ou igual a 2.
Neta Silva
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sex Mar 14, 2014 20:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: subespaço vetorial

Mensagempor Pessoa Estranha » Sex Mar 14, 2014 21:49

Olá!

Bem, para mostrar que um conjunto é um subespaço vetorial, basta verificar que as três propriedades que um subespaço estão satisfeitas no conjunto em questão. Gostaria de ajudar, mas o exercício parece um pouco difícil; então, podemos ir discutindo o problema para chegarmos à uma resposta. :)

Vamos verificar as seguintes propriedades:

a) W tem elemento neutro (mostrar);

Seja y \in W. Daí, y é da forma y = a{x}^{2}+bx+c, onde c = 2a + b. Queremos saber se 0 \in W. Para tanto, temos que verificar se y + 0 = y. Assim, consideremos 0 = 0{x}^{2}+0x+0. Então, podemos partir então para a próxima etapa:

y + 0 = (a{x}^{2} + bx + c)+(0{x}^{2}+0x+0) = ((a{x}^{2})+(0{x}^{2}))+((bx)+(0x)) + ((c)+(0)) = (a({x}^{2})+0({x}^{2})) + (b(x)+0(x)) + ((c)+(0)) = ((a+0)({x}^{2})) + ((b+0)(x)) + (c+0) = a({x}^{2})+b(x)+c = a{x}^{2}+bx+c = y

Portanto, W apresenta elemento neutro.

Agora, temos que verificar se as duas próximas propriedades de um subespaço vetorial são satisfeitas por W.

b) tomados dois elementos de W, a soma deles pertence à W (isto é, temos que mostrar que se x1, x2 \in W, então (x1 + x2) \in W);

c) considerados \alpha \in \Re, y \in W, (\alpha y) \in W;

O que sugere para continuar com a resolução ?

Espero ter ajudado um pouco....
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: subespaço vetorial

Mensagempor Russman » Sex Mar 14, 2014 22:40

Perfeito. Você mostrou que W é um ESPAÇO vetorial, de fato. Agora, para mostrar que o mesmo é SUBespaço de P_2 precisamos mostrar que W \subseteq P_2.

Como P_2 = \left \{ (ax^2 + bx + c  ) | a,b,c \in\mathbb{R} \right \}, podemos tomar c=2a+b nesse espaço ( como a e b são reais,uma combinação linear deles também o é) e então este será confundido com W. Assim, podemos "achar" W "dentro" de P_2. Portanto, é subespaço.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: subespaço vetorial

Mensagempor Pessoa Estranha » Sáb Mar 15, 2014 12:17

Estranho, pois aprendi que se verificarmos que W satisfaz aquelas três propriedades listadas, então é subespaço. Daí, uma vez que é subespaço, temos um resultado que garante que W é espaço vetorial.

Russman escreveu:Perfeito. Você mostrou que W é um ESPAÇO vetorial, de fato. Agora, para mostrar que o mesmo é SUBespaço de P_2 precisamos mostrar que W \subseteq P_2.

Como P_2 = \left \{ (ax^2 + bx + c  ) | a,b,c \in\mathbb{R} \right \}, podemos tomar c=2a+b nesse espaço ( como a e b são reais,uma combinação linear deles também o é) e então este será confundido com W. Assim, podemos "achar" W "dentro" de P_2. Portanto, é subespaço.


Por outro lado, para mostramos que W é espaço vetorial, então temos que verificar se W satisfaz oito propriedades do espaço vetorial, e não apenas três.

Talvez eu esteja confundido, mas acho que é assim....
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: subespaço vetorial

Mensagempor Pessoa Estranha » Sáb Mar 15, 2014 12:20

Ei! Vocês poderiam dar uma olhadinha no meu tópico de estruturas algébricas, sobre conjuntos limitados inferiormente? Por favor! :$
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: subespaço vetorial

Mensagempor Russman » Sáb Mar 15, 2014 12:31

Se for subespaço vetorial é obvio que deve ser também espaço vetorial.

O \mathbb{R}^3, por exemplo, satisfaz todos os requerimentos de espaço vetorial e não é subespaço de \mathbb{R}^2.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Introdução à Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D