• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Método de Newton] - Duvida nessa questão

MAP0151
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

[Método de Newton] - Duvida nessa questão

Mensagempor zifles2012 » Seg Set 17, 2012 16:13

De acordo com o método de Newton descubra as raizes da função
Código: Selecionar todos
[tex]x^2+lnx = 0[/tex]

Eu queria saber apenas por onde começar.. obrigado
zifles2012
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Set 17, 2012 16:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecânica
Andamento: cursando

Re: [Método de Newton] - Duvida nessa questão

Mensagempor LuizAquino » Seg Set 17, 2012 19:55

zifles2012 escreveu:De acordo com o método de Newton descubra as raizes da função
x^2+lnx = 0
Eu queria saber apenas por onde começar.. obrigado


Você já deve saber que o Método de Newton tem o seguinte formato:

x_{n+1} = x_n - \dfrac{f(x_n)}{f^\prime(x_n)}

Analisando a equação dada (que foi x^2+\ln x = 0), podemos criar a função f(x) = x^2 + \ln x . O objetivo é determinar a raiz (ou raízes) dessa função. Ou seja, o valor de x tal que f(x) = 0.

Você já deve saber que f^\prime(x) = 2x + \frac{1}{x} . Desse modo, você terá o esquema:

x_{n+1} = x_n - \dfrac{x_n^2 + \ln x_n}{2x_n + \dfrac{1}{x_n}}

Agora escolha um chute inicial x_0 e efetue o processo iterativo quantos passos desejar. Por exemplo, você pode parar em um passo k tal que f(x_k) seja tão próximo de zero quanto você deseja.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo Numérico e Aplicações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.