Página 1 de 1

Probabilidades

MensagemEnviado: Ter Abr 10, 2012 18:35
por joaofonseca
Num saco existem n bolas numeradas. Metade têm um número negativo e a outra metade têm um número positivo.
Retiram-se ao acaso duas bolas sem reposição.
Sejam dois acontecimentos:
A-"o produto dos dois números é positivo"
B-"o produto dos dois números é negativo"

Qual dos acontecimentos tem maior probabilidade de se verificar?

Re: Probabilidades

MensagemEnviado: Ter Abr 10, 2012 20:28
por fraol
Veja se você concorda com o raciocínio a seguir:

As probabilidades, caso a caso, são:

Pos = Neg e Neg => \frac{n}{2n} . \frac{n-2}{2n} = \frac{n^2 - 2n}{4n^2}

Pos = Pos e Pos => \frac{n}{2n} . \frac{n-2}{2n} = \frac{n^2 - 2n}{4n^2}

Neg = Neg e Pos => \frac{n}{2n} . \frac{n}{2n} = \frac{1}{4}

Neg = Pos e Neg => \frac{n}{2n} . \frac{n}{2n} = \frac{1}{4}

Positivo: A soma dos primeiros 2 casos é a soma de duas parcelas menores que 1/4 que é menor que 50%.

Negativo: A soma dos últimos 2 casos é igual a 50%. Assim o evento B tem maior probabilidade de ocorrer.

Ok?

.

Re: Probabilidades

MensagemEnviado: Qua Abr 11, 2012 05:58
por joaofonseca
A minha abordagem foi:

Casos possíveis: n(n-1), pois a cada uma das n bolas pode-se associar uma das restantes.

Acontecimento A:

Casos favoráveis:

Pos x Pos: \frac{n}{2} \cdot (\frac{n}{2}-1)

Neg x Neg: \frac{n}{2} \cdot (\frac{n}{2}-1)

Logo:

2 \cdot \left[\frac{n}{2} \cdot (\frac{n}{2}-1)\right]=n \cdot (\frac{n}{2}-1)=\frac{n^2}{2}-n=\frac{n^2-2n}{2}

A probabilidade é:

\frac{n^2-2n}{2}\cdot \frac{1}{n(n-1)}=\frac{n(n-2)}{2n(n-1)}=\frac{n-2}{2n-2}


Para o acontecimento B:

Casos favoráveis:
\frac{n}{2} \cdot \frac{n}{2}=\frac{n^2}{4}

A probabilidade é:

\frac{n^2}{4} \cdot \frac{1}{n(n-1)}=\frac{n}{4n-4}

Calculando o limite quando x \to +\infty de ambas expressões cheguei a \frac{1}{2} para o acontecimento A e \frac{1}{4} para o acontecimento B.

Algo deve estar errado no meu raciocínio.

Re: Probabilidades

MensagemEnviado: Qua Abr 11, 2012 11:24
por fraol
Bom dia João,

O meu raciocínio tem um furo ( no total de casos considerados ).
Mais tarde vou revisar e posto a correção.
Também vou analisar a sua resposta.

Grato.

Re: Probabilidades

MensagemEnviado: Qua Abr 11, 2012 14:42
por fraol
João,

Ao considerar corretamente o total de casos na retirada da segunda bola, as minhas contas ficam iguais às suas, exceto, no caso B, em:

joaofonseca escreveu:\frac{n^2}{4} \cdot \frac{1}{n(n-1)}=\frac{n}{4n-4}


Nesse caso, ao meu ver, é necessário considerar a situação NEG e POS e a POS e NEG, logo devemos multiplicar por 2 o seu resultado que ficaria:

\frac{n}{2n-2}

Assim ficamos com:

A = \frac{n-2}{2n-2}

B = \frac{n}{2n-2}

O que dá B > A; pois B > A, se B - A é um número positivo.

(João, o seu desenvolvimento da solução é bastante didático, muito bom.)

.

Re: Probabilidades

MensagemEnviado: Qua Abr 11, 2012 17:06
por joaofonseca
Realmente é coenrente que a ordem conte na contabilização dos casos favoráveis ao acontecimento B, já que a contabilização dos casos possíveis também levou em conta a ordem.

Re: Probabilidades

MensagemEnviado: Qua Abr 11, 2012 17:20
por fraol
joaofonseca escreveu:Realmente é coenrente que a ordem conte na contabilização dos casos favoráveis ao acontecimento B, já que a contabilização dos casos possíveis também levou em conta a ordem.


Sim.
Também é coerente que as probabilidades sejam em função de n já que o exercício é genérico.
Também faz sentido a probabilidade de ocorrer um número negativo ser maior pois, quando retiramos a 1a. bola com um sinal restarão no saco mais bolas com o sinal oposto, (\frac{n}{2}), do que com o mesmo sinal da 1a. bola (\frac{n}{2}-1).