• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ALGARISMOS DE 0 A 9

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

ALGARISMOS DE 0 A 9

Mensagempor Molina » Dom Jun 12, 2011 22:35

Preencha o diagrama colocando em cada círculo um dos algarismos de 0 a 9, sem repetição.

\bigcirc \times \bigcirc \bigcirc \times \bigcirc \bigcirc \bigcirc = \bigcirc \bigcirc \bigcirc \bigcirc
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: ALGARISMOS DE 0 A 9

Mensagempor Molina » Qui Jul 14, 2011 20:07

Se alguém estiver tentando, manifeste-se!

Vou dar a dica de três algarismos:

1 \times \bigcirc \bigcirc \times \bigcirc 4 \bigcirc = \bigcirc \bigcirc \bigcirc 0


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: ALGARISMOS DE 0 A 9

Mensagempor Claudin » Sex Jul 15, 2011 14:31

Molina,

Acho que encontrei um resultado plausível. Depois confere aqui.

1 \times26 \times 345 = 8970

Abraço
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: ALGARISMOS DE 0 A 9

Mensagempor Molina » Sex Jul 15, 2011 14:54

Claudin escreveu:Molina,

Acho que encontrei um resultado plausível. Depois confere aqui.

1 \times26 \times 345 = 8970

Abraço



:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: ALGARISMOS DE 0 A 9

Mensagempor FilipeCaceres » Sex Jul 15, 2011 19:55

Olá Claudin,

Poste a sua solução também para que possamos usufruir da mesma.

Grande abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: ALGARISMOS DE 0 A 9

Mensagempor Claudin » Sáb Jul 16, 2011 00:33

Analisei primeiramente, que a multiplicação entre os números, resultaria em um número no qual desse 0.

Como por exemplo 8x5; 6x5; 2x5.
E no entanto testei com valores menores possíveis, ou seja, colocando algarismos de menores valores para assumir o local da centena ou dezena do numeral, e assim foi umas 3 tentativas e encontrei a resposta.


Abraço
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: ALGARISMOS DE 0 A 9

Mensagempor FilipeCaceres » Sáb Jul 16, 2011 00:45

Olá Claudin,

Se você poder poste toda a sua solução.

Grande abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: ALGARISMOS DE 0 A 9

Mensagempor Claudin » Sáb Jul 16, 2011 01:06

Foi o que eu disse Filipe
Fiz por tentativa, mas levando em consideração os algarismos finais para que a multiplicação tenha como resultado um numeral com algarismo das unidades igual a zero. E também levando em consideração, utilização de algarismos que possuem menor valor para a casa das centenas e dezenas. E utilizando esse método tentei 2 vezes e errei, e na terceira já encontrei uma resposta aceitável, e acabou sendo confirmada pelo Colaborador Molina.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: ALGARISMOS DE 0 A 9

Mensagempor tenebroso » Qua Dez 18, 2013 23:18

faça uma caridade,um milagre lá em minha página...
tenebroso
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Dez 18, 2013 16:00
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: estudante
Andamento: cursando


Voltar para Desafios Difíceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}