• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PROBABILIDADE- ajuda

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

PROBABILIDADE- ajuda

Mensagempor marta preihs gentil » Qui Dez 19, 2013 12:26

Um estudante arrumou, de forma aleatória, numa prateleira, cinco livros de matemática, cada um versando sobre um assunto diferente- Teoria dos Conjuntos, Álgebra,Geometria, Trigonometria e Análise Combinatória. Com base nessa informação, a probabilidade de os livros de Álgebra e de Trigonometria não estarem juntos é de:

a) 1/3
b) 2/5 eu nunca resolvi problemas dessa complexidade porque estou estudando ainda o assunto. Por isso, necessito de ajuda.
c) 3/5
d) 3/4
e) 2/3
marta preihs gentil
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Dez 17, 2013 21:06
Formação Escolar: EJA
Área/Curso: estudante
Andamento: cursando

Re: PROBABILIDADE- ajuda

Mensagempor DanielFerreira » Seg Fev 10, 2014 13:05

Marta, vamos lá!

Encontrar a quantidade de disposições em que os dois livros em questão estão juntos é mais fácil de calcular do que se fosse o contrário, ou seja, não estarem juntos!

Teoria dos Conjuntos: C
Álgebra: A
Geometria: G
Trigonometria: T
Análise Combinatória: N

Calculemos a quantidade com eles juntos, enfim, como se fossem apenas um; segue um exemplo: CATGN. Como pode notar, há 4 elementos!

\\ A_{4,4} = \frac{4!}{(4 - 4)!} \\\\\\ A_{4,4} = \frac{4 \cdot 3 \cdot 2 \cdot 1}{1!} \\\\\\ A_{4,4} = 24


Quantidade total de arranjos:

\\ A_{5,5} = \frac{5!}{(5 - 5)!} \\\\\\ A_{5,5} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{1!} \\\\\\ A_{5,5} = 120


Então,

\\ \text{juntos \; + \; separados \; = \; total} \\ 24 + \; \text{separados} \; = \; 120 \\ \text{separados} \; = \; 96


Logo,

\\ \frac{\text{separados}}{\text{total}} = \frac{96}{120} = \frac{24 \cdot 4}{24 \cdot 5} = \boxed{\frac{4}{5}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Desafios Difíceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}