• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problemas de Concursos

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Problemas de Concursos

Mensagempor anapaulausp » Ter Nov 17, 2009 16:44

Tentei resolver este problema de todas as formas, mais não consigo chegar ao resultado, sei que o resultado é 295, mais gostaria de saber como chegar nele, por favor me ajudem, pois estou estudando para outro concurso.

segue o problema...

Suponha que, na venda de x unidades de certo artigo, o lucro obtido seja calculado pela fórmula L(x)=6x-C(x), em que C(x), é o custo da produção de tal artigo. Considerando que C(x), em reais, é dado pela expressão C(x)=150+2x/5, então, para que seja obtido um lucro, superior a R$1.500,00 a menor quatidade de artigos que devem ser vendidos é igual a
anapaulausp
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Nov 17, 2009 16:20
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Problemas de Concursos

Mensagempor Cleyson007 » Ter Nov 17, 2009 17:17

Olá anapaulausp, boa tarde!

A expressão é esta: L(x)=6x-C(x). Substitua o valor de C(x) nesta expressão, veja:

L(x)=6x-(150-\frac{2x}{5})

Como o lucro tem que ser superior a 1500

1500<6x-(150-\frac{2x}{5})

-28x<-8250 (-1)

x>294,6428571

Como x é maior que 294,64... o valor será 295

Qualquer dúvida comente!
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Problemas de Concursos

Mensagempor anapaulausp » Ter Nov 17, 2009 18:02

Valeu!!!
muito obrigada.
Eu estava resolvendo a expressão C(x)=150+2x/5, separada da formula.
Mais agora entendi.
Para chegar ao valor -28x<-8250, achei o mmc de 1500<6x-(150-2x/5). e fiz as mutiplicações.

Fiz conforme mostrou e finalmente consegui chegar ao resultado.

Muito Grata
anapaulausp
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Nov 17, 2009 16:20
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Desafios Difíceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59