• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[DESAFIO] Qual a soma das idades?

A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

[DESAFIO] Qual a soma das idades?

Mensagempor XxXMarlonXxX » Sáb Out 06, 2012 15:10

Desafio lançado! :-D

(TCE-PB) Um fato curioso ocorreu em uma família no ano de 1936. Nesse ano, Ribamar tinha tantos anos quantos expressavam os dois últimos algarismos do ano em que nascera e, coincidentemente, o mesmo ocorria com a idade de seu pai. Nessas condições, em 1936, quantos anos somavam as idades de Ribamar e de seu pai?

a) 76
b) 78
c) 82
d) 84
e) 86




------------- // -------------

Alternativa correta: e
XxXMarlonXxX
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qui Out 04, 2012 16:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Pré-vestibular
Andamento: cursando

Re: [DESAFIO] Qual a soma das idades?

Mensagempor Cleyson007 » Sáb Out 06, 2012 16:03

Boa tarde Marlon!

Chame a idade de Ribamar de "r"; o ano do nascimento de Ribamar de "a"; a idade do pai de Ribamar de "R", e o ano de nascimento do pai de Ribamar de "A".

Logo, para Ribamar temos:

1936 - a = r

a = 19du

a = 1900 + 10d + u

r = 10d + u

1936 -1900 = r + 10d + u

36 = r + 10d + u

36 = 2r

r = 18

Para o pai de Ribamar, teremos:

1936 - A = R

A = 1800 + 10D + U

R = 10D + U

1936 - 1800 = R + 10D + U

136 = R + 10D + U

136 = 2R

R = 68

Então:

r + R = 86

Comente qualquer dúvida :y:

Bons estudos!

Abraço,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [DESAFIO] Qual a soma das idades?

Mensagempor XxXMarlonXxX » Sáb Out 06, 2012 18:00

Eae Cleyson007, tudo bem contigo?Na verdade eu já tinha conseguido fazer antes, postei porque achei interessante, só usei outro caminho (mas difícil que o seu, claro).

Abraço! :y:
XxXMarlonXxX
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qui Out 04, 2012 16:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Pré-vestibular
Andamento: cursando


Voltar para Desafios Fáceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}