• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema - papel

A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Problema - papel

Mensagempor DanielFerreira » Dom Set 16, 2012 20:48

(UERJ) Pedro foi comprar papel para a impressora e observou que em cada pacote havia a seguinte especificação: 100 folhas de papel 75 g/m² no formato 215 mm X 315 mm.
O valor mais próximo, em kg, do conteúdo de cada pacote é:
a) 0,5
b) 1,6
c) 2,3
d) 5,0
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1670
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Problema - papel

Mensagempor Renato_RJ » Dom Set 16, 2012 20:59

Boa noite !!!

Vamos ver se posso lhe ajudar...

215 mm = 0,215 m \quad , \quad 315 mm = 0,315 m

Logo a área, em metros quadrados, de cada folha será:

A = 0,215 m \cdot 0,315 m = 0,0677 m^2

Como a densidade do papel é de \frac{75g}{m^2}, então sabemos que o peso da folha de papel será o produto da área pela densidade, resultando no peso em gramas:

P = 0,0677 m^2 \cdot \frac{75g}{m^2} = 50,775 g \approx 0,05 Kg

Como temos 100 folhas, logo o peso aproximado do pacote será de 5 Kg....

Espero que tudo esteja certinho...

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Problema - papel

Mensagempor DanielFerreira » Dom Set 16, 2012 21:10

Olá Renato,
boa noite!
Cometeu um pequeno lapso (talvez de digitação), veja:

\\ P = 0,0677 \, m^2 \cdot \frac{75g}{m^2} \\\\\\ \boxed{P = 5,0775 \,g}

...

Daí, 0,5 \, kg
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1670
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Problema - papel

Mensagempor DanielFerreira » Dom Set 16, 2012 21:20

Fiz assim:

Calculando a massa...

\\ \boxed{d = \frac{m}{v}} \\\\\\ m = \frac{75 \, g}{m^2} \cdot \frac{215 \, m}{1000} \cdot \frac{315 \, m}{1000} \\\\\\ m = 5,07 \, g

Aplicando uma regra de três simples...
1 folha --------------------- 5,07 g
100 folhas ----------------- x
(dir.)

x = 507 gramas

x = 0,507 kg
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1670
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Problema - papel

Mensagempor Renato_RJ » Dom Set 16, 2012 21:25

Opa, valeu !!!

Na hora de fazer a conta, em vez de digitar 0,0677 eu digitei 0,677, por isso apareceu os 50,77 gramas....

Erro meu mesmo....

Obrigado pela informação !!!

[ ]'s
Renato...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Problema - papel

Mensagempor DanielFerreira » Dom Set 16, 2012 21:30

Já imaginava!!
Isso também acontece comigo.

Até logo.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1670
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Desafios Fáceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.