• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema - papel

A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Problema - papel

Mensagempor DanielFerreira » Dom Set 16, 2012 20:48

(UERJ) Pedro foi comprar papel para a impressora e observou que em cada pacote havia a seguinte especificação: 100 folhas de papel 75 g/m² no formato 215 mm X 315 mm.
O valor mais próximo, em kg, do conteúdo de cada pacote é:
a) 0,5
b) 1,6
c) 2,3
d) 5,0
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1679
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Problema - papel

Mensagempor Renato_RJ » Dom Set 16, 2012 20:59

Boa noite !!!

Vamos ver se posso lhe ajudar...

215 mm = 0,215 m \quad , \quad 315 mm = 0,315 m

Logo a área, em metros quadrados, de cada folha será:

A = 0,215 m \cdot 0,315 m = 0,0677 m^2

Como a densidade do papel é de \frac{75g}{m^2}, então sabemos que o peso da folha de papel será o produto da área pela densidade, resultando no peso em gramas:

P = 0,0677 m^2 \cdot \frac{75g}{m^2} = 50,775 g \approx 0,05 Kg

Como temos 100 folhas, logo o peso aproximado do pacote será de 5 Kg....

Espero que tudo esteja certinho...

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Problema - papel

Mensagempor DanielFerreira » Dom Set 16, 2012 21:10

Olá Renato,
boa noite!
Cometeu um pequeno lapso (talvez de digitação), veja:

\\ P = 0,0677 \, m^2 \cdot \frac{75g}{m^2} \\\\\\ \boxed{P = 5,0775 \,g}

...

Daí, 0,5 \, kg
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1679
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Problema - papel

Mensagempor DanielFerreira » Dom Set 16, 2012 21:20

Fiz assim:

Calculando a massa...

\\ \boxed{d = \frac{m}{v}} \\\\\\ m = \frac{75 \, g}{m^2} \cdot \frac{215 \, m}{1000} \cdot \frac{315 \, m}{1000} \\\\\\ m = 5,07 \, g

Aplicando uma regra de três simples...
1 folha --------------------- 5,07 g
100 folhas ----------------- x
(dir.)

x = 507 gramas

x = 0,507 kg
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1679
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Problema - papel

Mensagempor Renato_RJ » Dom Set 16, 2012 21:25

Opa, valeu !!!

Na hora de fazer a conta, em vez de digitar 0,0677 eu digitei 0,677, por isso apareceu os 50,77 gramas....

Erro meu mesmo....

Obrigado pela informação !!!

[ ]'s
Renato...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Problema - papel

Mensagempor DanielFerreira » Dom Set 16, 2012 21:30

Já imaginava!!
Isso também acontece comigo.

Até logo.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1679
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Desafios Fáceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}