• Anúncio Global
    Respostas
    Exibições
    Última mensagem

O falcão e o rato

A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

O falcão e o rato

Mensagempor FcoEwerton » Ter Dez 14, 2010 23:01

Exemplo 3 - O falcão e o rato
Um falcão estava em cima de uma coluna com uma altura de dezoito. E há um rato. O rato está afastado da sua toca em oitenta e um. Porque tem medo do falcão, o rato começa a correr para o buraco. Quando ia a correr para a sua toca, foi morto pelo falcão cruel. Deve ser dito a que distância estava o rato da toca, e qual é o percurso do falcão.

Imagem do Problema: http://img683.imageshack.us/img683/7531/bhaska9.gif
FcoEwerton
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Dez 14, 2010 22:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: O falcão e o rato

Mensagempor Elcioschin » Qua Dez 15, 2010 15:05

Está faltando uma informação no seu enunciado.
Parece-me que a distância percorrida pelo falção é igual á distância percorrida pelo rato.
Se for isto o rato foi pego num ponto distante 38,5 m de sua toca.

Confirme
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: O falcão e o rato

Mensagempor FcoEwerton » Qua Dez 15, 2010 15:52

Segundo o desenho: A distância percorrida pelo Falcão é a hipotenusa do triângulo e a distância percorrida pelo rato é a base. Acho que ele quer saber o valor da hipotenusa e da base do triângulo.
FcoEwerton
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Dez 14, 2010 22:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: O falcão e o rato

Mensagempor Elcioschin » Qua Dez 15, 2010 20:07

FcoEwerton

Nem o desenho nem o enunciado postado trazem informação a respeito.
Vou te pedir um favor: ao invés de tentar descrever a situação, coloque o enunciado exatamente igual ao livro, apostila, etc. de onde você copiou o problema. Indique também informações que não constam do desenho, como distâncias percorrida pelo gavião e pelo rato.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: O falcão e o rato

Mensagempor FcoEwerton » Qua Dez 15, 2010 23:32

http://www.malhatlantica.pt/mathis/India/bhaskaraI3.htm

Exemplo 3 do Livro Bhaskara I da India.

Ele quer que você descubra a Hipotenusa e a base desse triângulo, sabendo que a altura é 18 metros e que a base está contida em uma segmento de reta de 81 metros.

Não dou mais dicas!!!
FcoEwerton
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Dez 14, 2010 22:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: O falcão e o rato

Mensagempor Elcioschin » Qui Dez 16, 2010 08:58

FcoEwerton

Infelizmente a tradução do problema original deixou a desejar. O enunciado deveria ter dito que o espaço percorrido pelo falcão é o mesmo espaço percorrido pelo rato (ou que a velocidade de ambos é a mesma.)

Partindo deste entendimento, sejam:

P = pé da coluna
C = posição inicial do falcão, no alto da coluna.
A = posição inicial do rato ao começar sua fuga
B = local onde o falcão alcança o rato

Do enunciado temos

BC = AB = x
BP = 81 - x
PC = 18

No triângulo ratângulo BPC ----> BC² = BP² + PC² ----> x² = (81 - x)² + 18² ----> x² = 81² - 2*81*x + x² + 324 ---->

0 = 6561- 162x + 324 ----> 162x = 6885 ----> x = 42,5 ---> distância percorrida pelo falcão e pelo rato

Distância do rato à sua toca no instante em que foi pego ----> d = BP ----> d = 81 - x ----> d = 81 - 42,5 ----> d = 38,5
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: O falcão e o rato

Mensagempor FcoEwerton » Qui Dez 16, 2010 11:29

É isso mesmo!!! Parabéns!!!
FcoEwerton
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Dez 14, 2010 22:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Desafios Fáceis

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59


cron