• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Quem é maior?

A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Quem é maior?

Mensagempor victoreis1 » Qui Nov 25, 2010 18:40

Quem é maior, 3^{2^{4^{5}}} ou 2^{3^{4^{5}}} ?

obs: note-se que 3^{2^{4^{5}}} \neq (3^{2^{4}})^{5}

não consegui fazer.. se forem tentar, por favor, nem tentem calcular "quanto vale" cada número..
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Quem é maior?

Mensagempor victoreis1 » Sex Nov 26, 2010 01:27

acho que consegui.. vejam se tá certo:

seja x = 4^{5}. Suponha que 3^{2^{x}} > 2^{3^{x}}.

Usando logaritmo:

2^{x} ln(3) > 3^{x} ln(2)

\frac{2^{x}}{3^{x}} > \frac {ln(2)}{ln(3)}

({\frac{2}{3}}})^{x} > \frac {ln(2)}{ln(3)}

x ln(\frac{2}{3}) < ln(\frac {ln(2)}{ln(3)})

x < \frac{ln(\frac {ln(2)}{ln(3)})}{ln(\frac{2}{3})} \approx 1,13588

já que x = 4^5, então x > 1,13 (absurdo)

logo temos que 3^{2^{x}} < 2^{3^{x}}.
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Quem é maior?

Mensagempor Loretto » Sex Nov 26, 2010 01:29

3^{2^{4^{5}}} > 2^{3^{4^{5}}}
Loretto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Dom Jul 25, 2010 01:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: exatas
Andamento: cursando

Re: Quem é maior?

Mensagempor Rogerio Murcila » Sex Nov 26, 2010 13:24

{3}^{{2}^{{4}^{{5}}}} = {10}^{{10}^{308}}

{2}^{{3}^{{4}^{{5}}}} = {10}^{{10}^{{489}}}}
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado

Re: Quem é maior?

Mensagempor Loretto » Sex Nov 26, 2010 14:03

Vamos lá.

Pergunta-se qual das potências seguintes é a maior:

[(3²)^4]^5
ou
[(2³)^4]^5

Veja que cada uma pode ser reescrita assim:

3^40
ou
2^60

Agora, para saber qual a maior, vamos aplicar logaritmo a cada uma, ficando:

log3^40 -------> 40log3

ou

log2^60 -----> 60log2

Como log3 é aproximadamente 0,4771 e log2 é aproximadamente 0,30103, vamos substituir em cada uma das expressões:

40log3 ----> 40*0,4771 = 19,084
ou
60log2 ----> 60*0,30103 = 18,062

Veja que o número formado a partir de 3^40 tem 20 algarismos (19 da característica do logaritmo + uma unidade).
E o número formado a partir de 2^60 tem 19 algarismos(18 da característica do logaritmo + 1 unidade).

Então, 3^40 é maior do que 2^60.

OK?
Adjemir.
Editado pela última vez por Loretto em Sex Nov 26, 2010 14:08, em um total de 1 vez.
Loretto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Dom Jul 25, 2010 01:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: exatas
Andamento: cursando

Re: Quem é maior?

Mensagempor Loretto » Sex Nov 26, 2010 14:05

Espero que ajude !
Loretto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Dom Jul 25, 2010 01:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: exatas
Andamento: cursando

Re: Quem é maior?

Mensagempor victoreis1 » Sex Nov 26, 2010 14:35

tá errado loretto

({3^{2}})^{4^{5}} \neq 3^{2^{4^{5}}}
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Quem é maior?

Mensagempor Rogerio Murcila » Sex Nov 26, 2010 15:53

Vamos lá:

Resolvendo o primeiro numero {3}^{{2}^{{4}^{{5}}}}
Temos --- {4}^{{5}} = 1024
ai fica
{3}^{{2}^{{4}^{{5}}}} = {3}^{{2}^{1024}} = {3}^{1,797693134862315907729305190789}^{{10}^{308}} \approx {10}^{{10}^{308}}

Resolvendo o segundo numero {2}^{{3}^{{4}^{{5}}}}
Temos --- {4}^{{5}} = 1024
ai fica
{2}^{{3}^{{4}^{{5}}}} = {2}^{{3}^{1024}} = {2}^{3,7339184874102004353295975418487}^{{10}^{{489}}}} \approx {10}^{{10}^{489}}

Portanto {2}^{{3}^{{4}^{{5}}}} é maior que {3}^{{2}^{{4}^{{5}}}}
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado

Re: Quem é maior?

Mensagempor 0 kelvin » Sex Nov 26, 2010 19:34

É, no começo achei q dava pra multiplicar os expoentes como se fosse (a^b)^c mas como tem aquela indicação que não pode fazer isso, então a conclusão q eu tinha chegado tb q era: 81^{10} > 64^{10} é falsa por potenciação feita errado.

Eu só sei fazer quando a questão dá pelo menos um log aproximado, pq aí é só fatorar.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Quem é maior?

Mensagempor Loretto » Sex Nov 26, 2010 23:28

Quem disse que não podi ? Num é tudo potência ? Intão podi uai !!
Loretto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Dom Jul 25, 2010 01:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: exatas
Andamento: cursando

Re: Quem é maior?

Mensagempor MarceloFantini » Sex Nov 26, 2010 23:37

Eu sinceramente espero que você esteja brincando, Loretto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Quem é maior?

Mensagempor Lorettto » Sáb Nov 27, 2010 01:37

"Quem disse que não podi ? Num é tudo potência ? Intão podi uai !!"

O meu comentário acima foi para a resolução que eu postei. Ou seja, estando tudo entre parênteses, faça a minha resolução. Senão, não faça. E brincar, eu só brinco com quem eu conheço, e de preferência, amigos ! :y:
Lorettto
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sáb Nov 27, 2010 01:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Quem é maior?

Mensagempor victoreis1 » Sáb Nov 27, 2010 01:39

Mais outra, quem sabe um pouco mais difícil.

Peço-lhes novamente que resolvam logicamente/algebricamente, não tentem calcular, não tem graça ^^

Quem é maior, 50! ou 20^{50} ?
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Quem é maior?

Mensagempor Lorettto » Sáb Nov 27, 2010 02:13

20^{50} > 50 !
Lorettto
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sáb Nov 27, 2010 01:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Quem é maior?

Mensagempor 0 kelvin » Sáb Nov 27, 2010 11:44

Potência de base 2, uma hora dobra e passa o fatorial, depois dobra, dobra e o fatorial fica pra trás.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Quem é maior?

Mensagempor victoreis1 » Sáb Nov 27, 2010 12:25

Ambos estão certos, mas notem que não é tão óbvio assim. Notem que 51! > 20^{50}.

Alguém consegue fazer essa questão sem ser indutivamente?
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Quem é maior?

Mensagempor 0 kelvin » Sáb Nov 27, 2010 12:31

Função?

f(x) = x!
f(x) = 2^x
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Quem é maior?

Mensagempor meuemail » Seg Dez 13, 2010 01:12

{3}^{{2}^{{4}^{5}}} . . . . {2}^{{3}^{{4}^{5}}}
Mas isto é válido
{{3}^{2}}^{y}} . . . . {{2}^{3}}^{y}}
Editado pela última vez por meuemail em Seg Dez 13, 2010 02:04, em um total de 3 vezes.
meuemail
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Dez 11, 2010 23:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando

Re: Quem é maior?

Mensagempor Lorettto » Seg Dez 13, 2010 01:23

Isso resolve de modo direto a qualquer questão de maior , menor de potências gigantes !! Claro, apenas quando estamos elevados a potências iguais, aí a base determina mesmo.
Editado pela última vez por Lorettto em Seg Dez 13, 2010 01:27, em um total de 1 vez.
Lorettto
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sáb Nov 27, 2010 01:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Quem é maior?

Mensagempor MarceloFantini » Seg Dez 13, 2010 01:24

Não, isto não é válido. Veja:

2^{3^{4^5}} \neq (2^3)^{4^5} = 2^{3 \cdot 4^5}
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Desafios Fáceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.