• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probleminhas de concursos

A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Probleminhas de concursos

Mensagempor anapaulausp » Ter Dez 08, 2009 17:45

Estou estudanto para concursos publicos e fazendo alguns simulados, tive dificuldade em resolver esse probleminha, podem me ajudar???

Ao organizar a tabela de jogos de futebol de seu bairro, Maurício observou que havia uma relação entre o número
de times participantes e o número de partidas que deveriam ser disputadas. Essa relação foi escrita sob a forma de uma
função: F(t) = t2 – t, onde t é o número de times participantes e F(t) representa o total de partidas em função de t.
Em 2007, o total de partidas disputadas em um só campeonato chegou a 156. Ou seja, em 2007 estavam envolvidos no
campeonato um total de.....
anapaulausp
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Nov 17, 2009 16:20
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Probleminhas de concursos

Mensagempor Cleyson007 » Ter Dez 08, 2009 18:27

Boa tarde Ana Paula!

O exercício obedece a seguinte função: f(t)={t}^{2}-t. Como foram disputadas 156 partidas, f(t)=156...

156={t}^{2}-t

Feito isso, basta achar o valor de t (números de envolvidos no campeonato).

{t}^{2}-t-156=0

Ana Paula, aqui temos uma equação do segundo grau. Basta resolvê-la encontrando os valores de t :-D

Fique atenta quanto aos valores encontrados para t (o valor negativo não satisfaz), ok?

Comente qualquer dúvida :y:

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Probleminhas de concursos

Mensagempor anapaulausp » Qua Dez 09, 2009 09:37

Valeu!!!

Mais uma vez

OBRIGADA
anapaulausp
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Nov 17, 2009 16:20
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Probleminhas de concursos

Mensagempor leandro moraes » Ter Jan 12, 2010 23:47

gostaria de saber como fasso para postar uma pergunta? sou novato no forum.
leandro moraes
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Ter Jan 12, 2010 23:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: contabilidade
Andamento: formado

Re: Probleminhas de concursos

Mensagempor DanielFerreira » Seg Mar 15, 2010 13:17

Estou estudanto para concursos publicos e fazendo alguns simulados, tive dificuldade em resolver esse probleminha, podem me ajudar???

Ao organizar a tabela de jogos de futebol de seu bairro, Maurício observou que havia uma relação entre o número
de times participantes e o número de partidas que deveriam ser disputadas. Essa relação foi escrita sob a forma de uma
função: F(t) = t2 – t, onde t é o número de times participantes e F(t) representa o total de partidas em função de t.
Em 2007, o total de partidas disputadas em um só campeonato chegou a 156. Ou seja, em 2007 estavam envolvidos no
campeonato um total de.....

156 = t^2 - t

t^2 - t - 156 = 0

(t - 13)(t + 12)

como o n° de times não pode ser negativo...
t - 13 = 0

t = 13 times
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1670
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Probleminhas de concursos ok

Mensagempor -daniel15asv » Qui Ago 02, 2012 20:16

ta errado o gabarito é 7
-daniel15asv
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Ago 02, 2012 19:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Desafios Fáceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?