• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probleminhas de concursos

A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Probleminhas de concursos

Mensagempor anapaulausp » Ter Dez 08, 2009 17:45

Estou estudanto para concursos publicos e fazendo alguns simulados, tive dificuldade em resolver esse probleminha, podem me ajudar???

Ao organizar a tabela de jogos de futebol de seu bairro, Maurício observou que havia uma relação entre o número
de times participantes e o número de partidas que deveriam ser disputadas. Essa relação foi escrita sob a forma de uma
função: F(t) = t2 – t, onde t é o número de times participantes e F(t) representa o total de partidas em função de t.
Em 2007, o total de partidas disputadas em um só campeonato chegou a 156. Ou seja, em 2007 estavam envolvidos no
campeonato um total de.....
anapaulausp
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Nov 17, 2009 16:20
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Probleminhas de concursos

Mensagempor Cleyson007 » Ter Dez 08, 2009 18:27

Boa tarde Ana Paula!

O exercício obedece a seguinte função: f(t)={t}^{2}-t. Como foram disputadas 156 partidas, f(t)=156...

156={t}^{2}-t

Feito isso, basta achar o valor de t (números de envolvidos no campeonato).

{t}^{2}-t-156=0

Ana Paula, aqui temos uma equação do segundo grau. Basta resolvê-la encontrando os valores de t :-D

Fique atenta quanto aos valores encontrados para t (o valor negativo não satisfaz), ok?

Comente qualquer dúvida :y:

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Probleminhas de concursos

Mensagempor anapaulausp » Qua Dez 09, 2009 09:37

Valeu!!!

Mais uma vez

OBRIGADA
anapaulausp
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Nov 17, 2009 16:20
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Probleminhas de concursos

Mensagempor leandro moraes » Ter Jan 12, 2010 23:47

gostaria de saber como fasso para postar uma pergunta? sou novato no forum.
leandro moraes
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Ter Jan 12, 2010 23:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: contabilidade
Andamento: formado

Re: Probleminhas de concursos

Mensagempor DanielFerreira » Seg Mar 15, 2010 13:17

Estou estudanto para concursos publicos e fazendo alguns simulados, tive dificuldade em resolver esse probleminha, podem me ajudar???

Ao organizar a tabela de jogos de futebol de seu bairro, Maurício observou que havia uma relação entre o número
de times participantes e o número de partidas que deveriam ser disputadas. Essa relação foi escrita sob a forma de uma
função: F(t) = t2 – t, onde t é o número de times participantes e F(t) representa o total de partidas em função de t.
Em 2007, o total de partidas disputadas em um só campeonato chegou a 156. Ou seja, em 2007 estavam envolvidos no
campeonato um total de.....

156 = t^2 - t

t^2 - t - 156 = 0

(t - 13)(t + 12)

como o n° de times não pode ser negativo...
t - 13 = 0

t = 13 times
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1683
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Probleminhas de concursos ok

Mensagempor -daniel15asv » Qui Ago 02, 2012 20:16

ta errado o gabarito é 7
-daniel15asv
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Ago 02, 2012 19:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Desafios Fáceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D