• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exericicio de MMC ou MDC? Como resolver?

A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Exericicio de MMC ou MDC? Como resolver?

Mensagempor Julia Moore » Ter Jul 30, 2013 16:06

Não consegui entender o enunciado, especificamente a parte grifada. Achei o MMC e o MDC de (140, 80 e 100), mas não compreendo como resolver o exercício abaixo. Agradecida desde já!

1) Na transmissão de um evento esportivo, comerciais dos produtos A, B e C, todos de uma mesma empresa, foram veiculados durante um tempo total de 140 s, 80 s e 100 s, respectivamente, com diferentes números de inserções para cada produto. Sabe-se que a duração de cada inserção, para todos os produtos, foi sempre a mesma, e a maior possível. Assim, o número total de comerciais dessa empresa veiculados durante a transmissão foi igual a
a) 32
b) 30
c) 24
d) 18
e) 16
Julia Moore
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jul 30, 2013 15:45
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Exericicio de MMC ou MDC? Como resolver?

Mensagempor Russman » Qua Jul 31, 2013 01:54

Na verdade, eu não entendi o enunciado.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Exericicio de MMC ou MDC? Como resolver?

Mensagempor DanielFerreira » Ter Fev 18, 2014 09:23

140 - 80 - 100 | 2
70 -- 40 - 50 --| 2
35 -- 20 - 25 --| 5
7 --- 4 --- 5 ---| 20

Portanto,

\\ 7 + 4 + 5 = \\\\ \boxed{16}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Desafios Fáceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59