• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema: ovelha

A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Problema: ovelha

Mensagempor tsfa » Sáb Nov 03, 2012 15:55

Boa tarde!
Gostaria que me ajudassem no seguinte problema, já o tentei resolver mas pelo que parece a minha resolução é fácil demais e não deve ser a correcta, acho que o problema não é complicado. Pertence à disciplina de Geometria II
O enunciado é o seguinte:
Num campo plano uma ovelha anda 3 metros para Sudoeste, depois 5m para Sudeste, depois 6m para Oeste e finalmente 4m para Sul. A que distância fica do ponto de partida?
tsfa
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Nov 03, 2012 15:52
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problema: ovelha

Mensagempor young_jedi » Sáb Nov 03, 2012 17:14

imagine que inicialmente ele esta no centro de um plano x y, no eixo y para cima é norte para baixo é sul e no eixo x para a direita é leste e esquerda oeste

se ele se move para 3 metros para sudoeste então ele se move numa trajetoria que faz um angulo de 45º com o eixo x e y então temos que calcular a distancia que ele se move para sul e para oeste aplicando seno e cosseno

d_{oeste}=3.cos45^0=3\frac{\sqrt{2}}{2}

e para sul

d_{sul}=3.cos45^0=3\frac{\sqrt{2}}{2}

depois para sudeste

d_{leste}=5.cos45^0=5\frac{\sqrt{2}}{2}

d_{oeste}=5.cos45^0=5\frac{\sqrt{2}}{2}

como ele ja tinha se movido para oeste e depois voltou para leste

d_{oeste}=3\frac{\sqrt{2}}{2}-5\frac{\sqrt{2}}{2}=-2\frac{\sqrt2}{2}

e para sul

d_{sul}=5\frac{\sqrt2}{2}+3\frac{\sqrt{2}}{2}=8\frac{\sqrt2}{2}

e por fim temos as distancias percorridas para 4 sul e 6 para oeste

d_{oeste}=-2\frac{\sqrt2}{2}+6

d_{sul}=8\frac{\sqrt2}{2}+4

então calculando a distancia total

d=\sqrt{\left(8\frac{\sqrt2}{2}+4\right)^2+\left(-2\frac{\sqrt2}{2}+6\right)^2}

d=\sqrt{32+32\sqrt{2}+16+2-12\sqrt{2}+36}

d=\sqrt{84+20\sqrt2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Problema: ovelha

Mensagempor sony01 » Qui Nov 08, 2012 20:50

Apenas uma sujestão a expressão encontrada na resposta pode ser simplificado usando os conhecimentos de radical duplo.
"Quem estuda sabe mais" - Filosofia de vida!
sony01
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Mar 04, 2012 16:28
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Inglês
Andamento: cursando

Re: Problema: ovelha

Mensagempor tsfa » Sex Nov 16, 2012 16:37

Muito obrigado pela ajuda :)
tsfa
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Nov 03, 2012 15:52
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Desafios Fáceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D