• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Valor da expressão

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Valor da expressão

Mensagempor DanielFerreira » Dom Set 16, 2012 21:26

(UFRJ) Sabendo que x, y e z são números reais e (2x + y - z)^2 + (x - y)^2 + (z - 3)^2 = 0 então, x + y + z é igual a:
a) 3
b) 4
c) 5
d) 6
e) 7
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Valor da expressão

Mensagempor young_jedi » Dom Set 16, 2012 21:34

se x, y e z sao valores reais então

(2x+y-z)^2,(x-y)^2,(z-3)^2

são numeros positivos, portanto para que a expressão resulte em 0

temos que

2x+y-z&=&0

x-y&=&0

z-3&=&0

portanto

z=3

x&=&y

2x+x-3&=&0

x&=&y&=&1

logo

x+y+z&=&1+1+3&=&5
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Valor da expressão

Mensagempor Renato_RJ » Dom Set 16, 2012 21:34

Se (2x + y - z)^2 + (x - y)^2 + (z - 3)^2 = 0 \Rightarrow \left \{\begin{array}{c} z - 3 = 0 \\  x - y = 0 \\  2x + y  - z = 0  \end{array} \right.

Resolvendo o sistema, temos:

z = 3 \quad , \quad x = y = 1

Logo a resposta é 5...

Espero que tudo esteja certinho....
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Valor da expressão

Mensagempor MarceloFantini » Dom Set 16, 2012 21:35

Uma soma de quadrados é igual a zero se e somente se todos são iguais a zero, então

\begin{cases} 2x+y-z=0, \\ x-y=0, \\ z-3=0, \end{cases}

daí z=3, x=y e 2x+y-z = 3x-3=0 \rightarrow x=y=1. Logo x+y+z=5.

Danjr, tente postar suas tentativas de resolução.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Desafios Médios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.