• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão Aritmética

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Progressão Aritmética

Mensagempor DanielFerreira » Sáb Set 08, 2012 22:02

Determinar m na equação x^4 - (4m - 6)x^2 + m^2 = 0, de modo que as raízes formem uma PA.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Progressão Aritmética

Mensagempor young_jedi » Dom Set 09, 2012 11:27

Primeiro temos que uma PA tem os seguintes elementos

(a,a+r,a+2r,a+3r)

analisando a equação temos que o coeficiente de x^3 é igual zero
portanto a soma das raizes é igual a zero, assim temos

a+a+r+a+2r+a+3r=0
4a+6r=0
r=-\frac{2}{3}a

portanto as raizes são

(a,\frac{1}{3}a,-\frac{1}{3}a,-a)

analisando novamente a equação veremos que

a.(-a)+a(-\frac{1}{3}a)+a(\frac{1}{3}a)+(-a)(-\frac{1}{3}a)+(-a)(\frac{1}{3}a)+\frac{1}{3}a(-\frac{1}{3}a)&=&-(4m-6)

a^2+\frac{a^2}{9}=4m-6

ainda da equação podemos tirar

a.(-a).\frac{a}{3}.(-\frac{a}{3})=m^2

a^4=9m^2
3m=a^2

com estas duas equação da pra achar m e as raizes

a^2+\frac{a^2}{9}=4m-6
3m=a^2
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Desafios Médios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.