• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão Aritmética

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Progressão Aritmética

Mensagempor DanielFerreira » Sáb Set 08, 2012 22:02

Determinar m na equação x^4 - (4m - 6)x^2 + m^2 = 0, de modo que as raízes formem uma PA.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Progressão Aritmética

Mensagempor young_jedi » Dom Set 09, 2012 11:27

Primeiro temos que uma PA tem os seguintes elementos

(a,a+r,a+2r,a+3r)

analisando a equação temos que o coeficiente de x^3 é igual zero
portanto a soma das raizes é igual a zero, assim temos

a+a+r+a+2r+a+3r=0
4a+6r=0
r=-\frac{2}{3}a

portanto as raizes são

(a,\frac{1}{3}a,-\frac{1}{3}a,-a)

analisando novamente a equação veremos que

a.(-a)+a(-\frac{1}{3}a)+a(\frac{1}{3}a)+(-a)(-\frac{1}{3}a)+(-a)(\frac{1}{3}a)+\frac{1}{3}a(-\frac{1}{3}a)&=&-(4m-6)

a^2+\frac{a^2}{9}=4m-6

ainda da equação podemos tirar

a.(-a).\frac{a}{3}.(-\frac{a}{3})=m^2

a^4=9m^2
3m=a^2

com estas duas equação da pra achar m e as raizes

a^2+\frac{a^2}{9}=4m-6
3m=a^2
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Desafios Médios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}


cron