• Anúncio Global
    Respostas
    Exibições
    Última mensagem

problemas do 2º grau

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

problemas do 2º grau

Mensagempor viduani » Seg Ago 13, 2012 19:15

Bom dia a todos os amigos e em especial àquele que tentará me ajudar neste problema. Mesmo se tratando de um problema do 2º grau e que foi feito através de sistema, não foi possível compreender a sua resolução. O problema foi descrito assim: No texto do livro teórico, LI TA-CHAO, organizou em 1918 a sociedade de pesquisas marxistas, um pequeno círculo de estudos com a finalidade de estudar e analisar a experiência russa. Acolheu, nesse grupo, um jovem humanista que também trabalhava na biblioteca como ajudante: MAO TSÉ-tung. De início, ele propôs distribuir para o grupo de estudos 360 livros. No dia da distribuição, faltaram 3 participantes e, desse modo, cada um dos que estavam presentes recebeu 10 livros a mais. Quantos participantes tinha esse grupo?

A proposta do professor foi a seguinte:

P.L=360 ---------------------L=360/P
(L + 10)(P - 3)= 360

Não entendi como ele armou esse esquema e porque ao fazer o sistema pelo método da substituição ele usou a equação transformada na equação debaixo sem ao menos tentar desenvolvê-la. Um forte abraço aos amigos.
viduani
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Jul 13, 2012 20:03
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: curso m3
Andamento: cursando

Re: problemas do 2º grau

Mensagempor DanielFerreira » Seg Ago 13, 2012 19:47

Viduani,
boa noite!
Quanto ao 'esquema':
número de participantes: P
número de livros: L

Ao multiplicar a quantidade total de participantes com a quantidade de livros de cada um deles, tem-se o número total de livro, daí: P \cdot L = 360;

Três participantes faltaram, então P - 3;

Cada um deles recebeu 10 livros a mais, L + 10, com isso, (P - 3)(L + 10) = 360

Quanto a última dúvida, seu professou apenas optou pela maneira que julgou mais simples. Ele poderia ter desenvolvido...

Comente qualquer dúvida!

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Desafios Médios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}