• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prove que a bola está no saco

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Prove que a bola está no saco

Mensagempor joaofonseca » Sáb Mar 03, 2012 20:31

Num saco existem 15 bolas.Cinco verdes, cinco amarelas e cinco brancas.As bolas da mesma cor estão numeradas de 1 a 5.

Agora suponha que no saco estão algumas das 15 bolas.Nestas novas condições, uma bola é retirada do saco.Sabemos que:

-a probabilidade de a bola retirada ser amarela é 50%

-a probabilidade de a bola retirada ter o número 1 é 25%

-a probabilidade de a bola retirada ser amarela ou ter o numero 1 é 62,5%

Prove que a bola amarela com o numero 1 está no saco.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Prove que a bola está no saco

Mensagempor LuizAquino » Sáb Mar 03, 2012 22:31

joaofonseca escreveu:Num saco existem 15 bolas.Cinco verdes, cinco amarelas e cinco brancas.As bolas da mesma cor estão numeradas de 1 a 5.

Agora suponha que no saco estão algumas das 15 bolas.Nestas novas condições, uma bola é retirada do saco.Sabemos que:

-a probabilidade de a bola retirada ser amarela é 50%

-a probabilidade de a bola retirada ter o número 1 é 25%

-a probabilidade de a bola retirada ser amarela ou ter o numero 1 é 62,5%

Prove que a bola amarela com o numero 1 está no saco.


Sejam os seguintes eventos:

A -- a bola é amarela;
N -- a bola tem número 1.

Dos conhecimentos sobre probabilidade, sabemos que:

P(A\cup N) = P(A) + P(N) - P(A\cap N)

Substituindo os dados do exercício, temos que:

0,625 = 0,5 + 0,25 - P(A\cap N)

P(A\cap N) = 0,125

Ou seja, a probabilidade da bola retirada ser amarela e ter o número 1 é igual a 12,5%. Como essa probabilidade é diferente de 0, temos que a bola amarela com o número 1 está no saco.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Prove que a bola está no saco

Mensagempor fraol » Sáb Mar 03, 2012 23:10

De fato, como o professor demonstrou, P(A \cap N) = P(A) . P(B) = 12,5% que é diferente de 0.
Com isso a probabilidade de que uma bola retirada seja Amarela e tenha o número 1 é de 12,5%.

Por outro lado se tivermos, por exemplo oito bolas no saco, quatro serão amarelas (50%) , digamos que numeradas de 2 a 5, e duas terão o número 1 (25%), digamos que seja uma verde e outra branca.

Eu havia pensado um pouco nesse problema e acho não há como provar propriamente o que foi pedido.

O que vocês acham?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Prove que a bola está no saco

Mensagempor LuizAquino » Sáb Mar 03, 2012 23:40

fraol escreveu:De fato, como o professor demonstrou, P(A \cap N) = P(A) . P(B) = 12,5% que é diferente de 0.
Com isso a probabilidade de que uma bola retirada seja Amarela e tenha o número 1 é de 12,5%.

Por outro lado se tivermos, por exemplo oito bolas no saco, quatro serão amarelas (50%) , digamos que numeradas de 2 a 5, e duas terão o número 1 (25%), digamos que seja uma verde e outra branca.

Eu havia pensado um pouco nesse problema e acho não há como provar propriamente o que foi pedido.

O que vocês acham?


O seu raciocínio tem um furo. Qual é a probabilidade da bola retirada ser amarela ou ter o número 1?

Você tem que armar um exemplo na qual essa probabilidade seja 62,5% (como informa no exercício), mas sem que haja a bola amarela de número 1.

No exemplo que você deu, temos que:
-- 4 bolas amarelas: com números de 2 até 5;
-- 1 bola verde: com o número 1;
-- 1 bola branca: com o número 1;

Você ainda precisa completar esse exemplo informando mais 2 bolas (já que o seu total era de 8). Agora tente completar de modo que aquela última probabilidade seja 62,5%, mas sem que haja a bola amarela de número 1.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Prove que a bola está no saco

Mensagempor fraol » Sáb Mar 03, 2012 23:56

Tem razão, como sempre aliás.

Nesse caso 12,5%, P(A \cap N), do saco de oito bolas deveria ser de bolas amarelas e com o número 1. Ou seja uma bola. Então está provado.

Grato.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Prove que a bola está no saco

Mensagempor Guill » Sáb Mar 17, 2012 14:00

Podemos tirar as seguintes informações:

* Temos 3 bolas com o número 1 escrito.
* Como a probabilidade de retirar uma bola amarela do saco é 50%, metade das bolas desse saco devem ser amarelas e portanto, não temos mais que 10 bolas no saco.
* Como a probabilidade de retirar uma bola com número 1 do saco é 25%, existem bolas com número 1 dentro do saco.

Agora, observe que a probabilidade de retirar uma bola amarela ou com número 1 do saco é 62,5% = 50% + 12,5%. Mas o correto seria que 75% fosse a probabilidade, o que não ocorre porque o número é menor. Isso quer dizer que existe um encontro, ou seja, existe uma bola que possui as duas características ao mesmo tempo, fazendo com que o número de amostras diminua.

Isso prova.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Desafios Médios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D