• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Máximo produto

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Máximo produto

Mensagempor joaofonseca » Seg Nov 14, 2011 22:13

Sejam dois números positivos a e b cuja soma é 120. Qual o produto máximo que se pode obter entre metade de um e o quadrado do outro?
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Máximo produto

Mensagempor Neperiano » Qua Nov 16, 2011 15:45

Ola

a+b=120
a/2.2b=x

Minha sugestão é ir tentando valores de a e b, vá tentando a =0 b=120 e diminuindo até chegar 60 por 60, pegue numeros no meio aleatorioes só para ver e vá tentando

Deve ter uma outra forma de achar ela exata, talvez derivando, mas não sei como, vamos deixar aqui, se alguem souber

Mas eu tentaria por tentativa e erro

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Máximo produto

Mensagempor pedroaugustox47 » Sex Mai 11, 2012 17:17

a+b=120
M.A (a,b)= \frac{a+b}{2}
aplicando MA\geqMG temos:
60\geq\sqrt[2]{a.b}
3600\geqa.b
se queremos \frac{a}{2}.b^2 máximo, temos que ter a.b máximo
a.b máximo = 3600
temos o sistema
a+b=120
a.b+3600
logo a=60 e b =60
\frac{a}{2}.b^2=30.3600=360000.3=108.000
abraços :y:
pedroaugustox47
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Mai 11, 2012 01:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Sistema Elite de Ensino-CN/EPCAR
Andamento: cursando


Voltar para Desafios Médios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}