• Anúncio Global
    Respostas
    Exibições
    Última mensagem

tg x é maior que o comprimento do arco enxerga...

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

tg x é maior que o comprimento do arco enxerga...

Mensagempor ogojy » Sáb Abr 09, 2011 00:36

o arco chama x só por que foi assim que pensei o problema, desconsidere a relacão real entre o tamanho do arco e o angulo que ele enxerga.


Imagem

seja
s > 0
x > y
s + y > tg x
tão logo
s + x > tg x


queremos provar que tg x > x

por absurdo partamos de tg x ? x
temos

x ? tg x
e
s + x > tg x
para
s > 0
impossivel, um absurdo

tão logo
x ? tg x é falso

c. q. d.
tg x > x

eu que bolei essa demonstração. alguem ve algo de errado?
ogojy
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Abr 09, 2011 00:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Atuaria
Andamento: cursando

Re: tg x é maior que o comprimento do arco enxerga...

Mensagempor Guill » Ter Mai 01, 2012 09:52

Bem interessante. No entanto, essa demonstração é inválida em certas partes da circunferência (em certos lugares do segundo, terceiro e quarto quadrante). Isso pode ser mostrado da seguinte maneira:

f(x)=tgx - x

f'(x)=\frac{1}{cos^2 x}-1


Observe que:

\lim_{x\rightarrow\frac{-\pi}{2}} tgx - x = -\infty


Isso mostra que essa função possui valores menores do que 0.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: tg x é maior que o comprimento do arco enxerga...

Mensagempor Guill » Qua Mai 02, 2012 19:17

Prezado colega:

Estive revendo sua demonstração e encontrei uma falha nela:

ogojy escreveu:s + x > tg xparas > 0impossivel, um absurdo




Onde s + x > tg x, não é absurdo, mas sim uma verdade incontestável, já que, se s + y > tg x e y = x + n, para um valor n positivo qualquer. Por isso, me sinto na obrigação de criar uma nova demonstração para substituir essa:


No seu ciclo trigonométrico, temos um triângulo de catetos tg x e 1. Contido nele, temos uma fatia da citcunferência, de ângulo x radianos. Logicamente, a área da fatia é menor que a área do triângulo (em x = 0 essa área é igual):

{A}_{triângulo} \geq {A}_{fatia}


A área do triângulo é a metade do produto dos catetos, enquato que a área da fatia é metade do comprimeto do arco (por regra de três: Área da circunferência total é \pi e o comprimento total da mesma é 2\pi):

\frac{1.tgx}{2} \geq \frac{x}{2}

tgx \geq x



Essa demonstração nos permite ver que essa desigualdade é válida no primeiro quadrante, mas nada garante sobre os demais.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Desafios Médios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59