• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cobrança de pedágio

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Cobrança de pedágio

Mensagempor magaleao » Qui Dez 31, 2009 11:08

Bom dia, preciso de uma ajuda para entender essas questões de concursos.

Uma cabine de uma rodovia arrecadou 3.360 reais com a cobrança de pedágio de 800 veículos, entre motos, carros de passeio e caminhões, que passaram por lá durante 1 hora. Sabe-se que nessa cabine e nesse horário, considerando-se os veículos que pagaram pedágio, o número de carros de passeio foi o triplo da quantidade de motos e que os preços cobrados foram os da lista abaixo. Portanto, pode-se afirmar que a quantidade de caminhões que passaram por essa cabine, pagando pedágio, foi de:

Moto - R$ 1,80
Carro de passeio - R$ 4,20
Caminhão - R$ 6,00

Desde já agradeço.
magaleao
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Dez 17, 2009 13:33
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Cobrança de pedágio

Mensagempor MarceloFantini » Qui Dez 31, 2009 16:23

Boa tarde Maga!

Do enunciado, pode-se depreender três equações. Chamando motos de x, carros de passeio de y e caminhões de z, temos:

1,8x + 4,2y+6z=3360 (I)

x+y+z=800 (II)

y=3x (III)

Dividindo-se a primeira equação por 0,6, temos:

3x +7y +10z = 5600

De (III) em (I) e (II), temos:

24x+10z=5600 (I)

4x+z=800 (II)

Resolvendo-se o sistema, encontramos que:

x = 150
y=450
z=200

Portanto, o número de motos foi 150, o número de carros de passeio foi 450 e o número de caminhões foi 200.

Um abraço e Feliz Ano Novo!
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Cobrança de pedágio

Mensagempor magaleao » Ter Jan 05, 2010 12:49

Desculpa, mas não consegui entender a partiri de: De (III) em (I) e (II), temos:

Será que poderia me explicar como chegou a esses valores?!

Obrigada.
magaleao
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Dez 17, 2009 13:33
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Cobrança de pedágio

Mensagempor MarceloFantini » Ter Jan 05, 2010 14:14

Boa tarde Maga!

A equação (III) é essa: y = 3x, certo? Eu apenas substitui nas equações (I):

3x + 7(3x) + 10z = 5600

3x + 21x + 10z = 5600

24x + 10z = 5600 \quad(I);

E (II):

x + 3x + z = 800

4x + z = 800 \quad(II);

Agora você tem um sistema com duas equações e duas incógnitas, basta resolver esse sistema e encontrar o valor de todas as incógnitas.

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Cobrança de pedágio

Mensagempor daieneros » Sex Jul 12, 2013 10:35

Bom dia, preciso de uma ajuda para entender essas questões de concursos.

Uma cabine de uma rodovia arrecadou 3.360 reais com a cobrança de pedágio de 800 veículos, entre motos, carros de passeio e caminhões, que passaram por lá durante 1 hora. Sabe-se que nessa cabine e nesse horário, considerando-se os veículos que pagaram pedágio, o número de carros de passeio foi o triplo da quantidade de motos e que os preços cobrados foram os da lista abaixo. Portanto, pode-se afirmar que a quantidade de caminhões que passaram por essa cabine, pagando pedágio, foi de:

Moto - R$ 1,80
Carro de passeio - R$ 4,20
Caminhão - R$ 6,00

Do enunciado, pode-se depreender três equações. Chamando motos de x, carros de passeio de y e caminhões de z, temos:

1,8x + 4,2y+6z=3360 (I)

x+y+z=800 (II)

y=3x (III)

Dividindo-se a primeira equação por 0,6, temos:

3x +7y +10z = 5600

De (III) em (I) e (II), temos:

24x+10z=5600 (I)

4x+z=800 (II)

Resolvendo-se o sistema, encontramos que:

x = 150
y=450
z=200

Portanto, o número de motos foi 150, o número de carros de passeio foi 450 e o número de caminhões foi 200.

Infelizmente não entendi porque multiplicar por 0,6? :$
daieneros
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Jul 12, 2013 10:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Biologia
Andamento: cursando

Re: Cobrança de pedágio

Mensagempor 314159265 » Qua Fev 22, 2017 07:09

Ele dividiu os dois lados por 0.6 pra trabalhar com números inteiros. Se você faz com os dois lados a mesma coisa, a igualdade permanece.

Imagine uma equação assim:

0.25x = 3.5

Você pode multiplicar os dois lados por 4 pra achar x = 14. Entendeu?
314159265
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Fev 13, 2017 02:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Desafios Médios

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?