• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cobrança de pedágio

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Cobrança de pedágio

Mensagempor magaleao » Qui Dez 31, 2009 11:08

Bom dia, preciso de uma ajuda para entender essas questões de concursos.

Uma cabine de uma rodovia arrecadou 3.360 reais com a cobrança de pedágio de 800 veículos, entre motos, carros de passeio e caminhões, que passaram por lá durante 1 hora. Sabe-se que nessa cabine e nesse horário, considerando-se os veículos que pagaram pedágio, o número de carros de passeio foi o triplo da quantidade de motos e que os preços cobrados foram os da lista abaixo. Portanto, pode-se afirmar que a quantidade de caminhões que passaram por essa cabine, pagando pedágio, foi de:

Moto - R$ 1,80
Carro de passeio - R$ 4,20
Caminhão - R$ 6,00

Desde já agradeço.
magaleao
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Dez 17, 2009 13:33
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Cobrança de pedágio

Mensagempor MarceloFantini » Qui Dez 31, 2009 16:23

Boa tarde Maga!

Do enunciado, pode-se depreender três equações. Chamando motos de x, carros de passeio de y e caminhões de z, temos:

1,8x + 4,2y+6z=3360 (I)

x+y+z=800 (II)

y=3x (III)

Dividindo-se a primeira equação por 0,6, temos:

3x +7y +10z = 5600

De (III) em (I) e (II), temos:

24x+10z=5600 (I)

4x+z=800 (II)

Resolvendo-se o sistema, encontramos que:

x = 150
y=450
z=200

Portanto, o número de motos foi 150, o número de carros de passeio foi 450 e o número de caminhões foi 200.

Um abraço e Feliz Ano Novo!
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Cobrança de pedágio

Mensagempor magaleao » Ter Jan 05, 2010 12:49

Desculpa, mas não consegui entender a partiri de: De (III) em (I) e (II), temos:

Será que poderia me explicar como chegou a esses valores?!

Obrigada.
magaleao
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Dez 17, 2009 13:33
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Cobrança de pedágio

Mensagempor MarceloFantini » Ter Jan 05, 2010 14:14

Boa tarde Maga!

A equação (III) é essa: y = 3x, certo? Eu apenas substitui nas equações (I):

3x + 7(3x) + 10z = 5600

3x + 21x + 10z = 5600

24x + 10z = 5600 \quad(I);

E (II):

x + 3x + z = 800

4x + z = 800 \quad(II);

Agora você tem um sistema com duas equações e duas incógnitas, basta resolver esse sistema e encontrar o valor de todas as incógnitas.

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Cobrança de pedágio

Mensagempor daieneros » Sex Jul 12, 2013 10:35

Bom dia, preciso de uma ajuda para entender essas questões de concursos.

Uma cabine de uma rodovia arrecadou 3.360 reais com a cobrança de pedágio de 800 veículos, entre motos, carros de passeio e caminhões, que passaram por lá durante 1 hora. Sabe-se que nessa cabine e nesse horário, considerando-se os veículos que pagaram pedágio, o número de carros de passeio foi o triplo da quantidade de motos e que os preços cobrados foram os da lista abaixo. Portanto, pode-se afirmar que a quantidade de caminhões que passaram por essa cabine, pagando pedágio, foi de:

Moto - R$ 1,80
Carro de passeio - R$ 4,20
Caminhão - R$ 6,00

Do enunciado, pode-se depreender três equações. Chamando motos de x, carros de passeio de y e caminhões de z, temos:

1,8x + 4,2y+6z=3360 (I)

x+y+z=800 (II)

y=3x (III)

Dividindo-se a primeira equação por 0,6, temos:

3x +7y +10z = 5600

De (III) em (I) e (II), temos:

24x+10z=5600 (I)

4x+z=800 (II)

Resolvendo-se o sistema, encontramos que:

x = 150
y=450
z=200

Portanto, o número de motos foi 150, o número de carros de passeio foi 450 e o número de caminhões foi 200.

Infelizmente não entendi porque multiplicar por 0,6? :$
daieneros
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Jul 12, 2013 10:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Biologia
Andamento: cursando

Re: Cobrança de pedágio

Mensagempor 314159265 » Qua Fev 22, 2017 07:09

Ele dividiu os dois lados por 0.6 pra trabalhar com números inteiros. Se você faz com os dois lados a mesma coisa, a igualdade permanece.

Imagine uma equação assim:

0.25x = 3.5

Você pode multiplicar os dois lados por 4 pra achar x = 14. Entendeu?
314159265
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Fev 13, 2017 02:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Desafios Médios

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59


cron