• Anúncio Global
    Respostas
    Exibições
    Última mensagem

logaritmo

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

logaritmo

Mensagempor barbaramattos » Seg Dez 16, 2013 01:27

O lucro obtido por um comerciante na venda de determinado produto é dado , em reais, pela função L(x)= -1/10x²+ 15x, sendo x o número de unidades vendidas e o menor que x menor que 150.
Se L(m) é o lucro máximo que comerciante tem condições de obter, pode-se afirmar que log( l(m)/3m) é igual a:

a) 1+2log2
b) 2log2+log5
c) 2-log5
d) 1-2log2
e) 1-2log5
barbaramattos
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Dez 16, 2013 00:04
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: logaritmo

Mensagempor Russman » Seg Dez 16, 2013 18:31

O enunciado está confuso, mas acredito que você deva calcular o lucro máximo obtido na venda das unidades. Para isto, repare que a função lucro é quadrática em x( ao menos é o que parece) e você deve ter tido contato com uma fórmula que calcule o "ponto de vértice" da forma quadrática da função graficada. Pois o faça. Uma vez calculado m e L(m) faça a operação indicada e aplique o logaritmo.

OBS: TENTE fazer a questão e poste seus resusltados bem como suas possíveis dúvidas em algum passo.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: logaritmo

Mensagempor barbaramattos » Seg Dez 16, 2013 21:22

desculpe-me por não postar explicações ditas iniciais. Eu não sei fazer esta questão por causa que não vi ainda uma semelhante ou igual a essa.
Essa é a minha dificuldade.
barbaramattos
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Dez 16, 2013 00:04
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: logaritmo

Mensagempor barbaramattos » Seg Dez 16, 2013 21:48

desculpe-me por não postar as informações ditas iniciais. O fato da questão não apresentar resolução, seria pelo seguinte problema: ainda não encontrei alguma questão parecida ou semelhante, portanto, impossibilita-me fazê-la. Por gentileza, fico agradecida se o senhor a resolvesse ou mostrasse uma semelhante para mim, que auxiliasse em meus estudos. Pense: numa sala de aula quando uma aluna não sabe resolver uma questão ela recorre a um professor ou a alguém que sabe mais que ela,contudo, caso soubesse resolvê-la não precisaria de ninguém e nem de ajuda cibernética de voluntariado.

Ajudem-me, por favor, aqueles de boa vontade.
barbaramattos
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Dez 16, 2013 00:04
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: logaritmo

Mensagempor Russman » Seg Dez 16, 2013 22:21

MInha intenção não foi parecer estar de má vontade. É recorrente alunos buscando resoluções completas para trabalhos e afins. Mas, ok. Você me pareceu interessada.

Uma função do tipo f(x) = ax^2 + bx +c possui um ponto de extremo em x= \frac{-b}{2a}. Isto é, aplicando x= \frac{-b}{2a} em f(x) você calcula-rá o seu maior ou menor valor. Se a>0 então o ponto é de mínimo e se a<0 o ponto é de máximo. Naturalmente, calculando f(x= \frac{-b}{2a}) você chegará em f(x= \frac{-b}{2a}) = - \frac{\Delta}{4a} (onde este delta é o mesmo da fórmula de resolução de equações de 2º grau) que é o maior ou menor valor atingido pela função.

Como a sua função é L(x) = -\frac{1}{10}x^2 + 15x o ponto extremo será de máximo, pois a=-\frac{1}{10}<0. Ele ocorre em

x = m =  \frac{-b}{2a} =  \frac{-15}{-2\frac{1}{10}} = \frac{150}{2} = 75

com valor

L(m) = - \frac{\Delta}{4a} = - \frac{15^2-4(-\frac{1}{10}).0}{-4\frac{1}{10}}=\frac{15.15.10}{4} = 562,5

Agora, o exercicio manda fazer

\log (\frac{L(m)}{3m}) = \log (\frac{562,5}{3.75}) = \log (2,5) = \log (\frac{5}{2} ) = \log (5) - \log (2) .

Basta aplicar as propriedade do logaritmo do quociente para chegar na resposta q eu escrevi. Porém, esse valor não está presente na questão. Ou eu calculei algum numero errado ou deve haver outro engano.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: logaritmo

Mensagempor barbaramattos » Seg Dez 16, 2013 23:07

obrigada
barbaramattos
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Dez 16, 2013 00:04
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando


Voltar para Desafios Médios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?