• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema com fração

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Problema com fração

Mensagempor junior_gyn » Dom Abr 24, 2011 16:55

boa tarde!
por favor me ajude!

O numero n de aulas de Matematica, Geografia e Inglês corresponde a 2/5 do total de aulas que Beatriz tem durante a semana. Sabendo que Beatriz tem ainda 24 aulas de outras materias durante a semana, conclui-se n e igual a:
a)16
b)18
c)12
d)14
junior_gyn
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Dom Abr 24, 2011 15:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problema com fração

Mensagempor NMiguel » Dom Abr 24, 2011 17:16

Sejam X o número total de aulas da Inês. Então, \frac{2}{5}X=n e \frac{3}{5}X=24.

Da segunda equação tiramos X=40 e da primeira tiramos n=16.

Logo, a resposta correcta é a resposta a)
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Desafios Médios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.