• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Estatística e probabilidades [ajuda]

Estatística e probabilidades [ajuda]

Mensagempor citadp » Sáb Jun 02, 2012 13:18

Olá, vou ter exame e alguns exercicios em que preciso de achar a probabilidade eu tenho muitas dúvidas.

O exercicios é :

Para fabricar um determinado produto uma empresa utiliza 3 maquinas, M1, M2 e
M3. Sabe-se que: i) a maquina M1 fabrica 40% da produc~ao total da empresa; ii)
a percentagem de produtos defeituosos fabricados pelas maquinas M1, M2 e M3 e,
respectivamente, 3%, 5% e 8%; iii) 5% da produc~ao total e defeituosa.
(a) Calcule a percentagem da produc~ao total fabricada pela maquina M3.
(b) Sabendo que um produto escolhido ao acaso n~ao e defeituoso, qual a probabilidade
de ter sido fabricado pela maquina M2?

Eu do que recolhi os dados percebi que a máquina M1 tem 40% da produção total, depois tem 3% de produtos fabricados, ni ponto iii) diz que a produção total de produtos defeituosos é 5 % e daí eu não consigo perceber qual a informação útil para achar a produçaõ total de M2 e M3.

E o produto não ser defeituoso é 1 - 0.05 = 0.95 ?

Estes exercicios para mim são muito confusos, se alguém me puder ajudar, agradeço.

Cumprimentos,

Ana
citadp
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Jun 02, 2012 13:11
Formação Escolar: SUPLETIVO
Área/Curso: Informática
Andamento: cursando

Re: Estatística e probabilidades [ajuda]

Mensagempor joaofonseca » Dom Jun 03, 2012 09:21

Para este problema é necessário ter conhecimentos de axiomática das probabilidades e probabilidade condicionada.
Quando se diz:
a percentagem de produtos defeituosos fabricados pelas maquinas M1, M2 e M3 e,
respectivamente, 3%, 5% e 8%


significa,

P(D|A)=0.03

P(D|B)=0.05

P(D|C)=0.08

Sabemos também que:

P(A)+P(B)+P(C)=1

P(C)=P(C \cap D)+P(C \cap \bar{D})

e,

P(B|\bar{D})=\frac{P(B \cap \bar{D})}{P(\bar{D})}

Mas com a informação que é dada no enunciado eu não consegui encontrar o que é pedido.Falta informação!
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Estatística e probabilidades [ajuda]

Mensagempor nandabhz » Dom Jun 03, 2012 16:53

To em duvida nestas 3 questoes de estatisticas abaixo. Alguem poderia me ajudar a resolver? Já coloquei as respostas, porem nao consegui desenvolve-las. Desde já agradeço.

1- As vendas diárias de uma lanchonete seguem uma distribuição normal, com média de R$400,00 e desvio padrão igual a R$ 100,00. Calcule a probabilidade de que em um determinado dia o faturamento da lanchonete esteja entre R$ 380,00 e R$500,00. Resposta 42,06

2-Uma grande revista de negócios brasileira afirmou que o faturamento das indústrias de uma determinada região do país seria igual a R$820.000,00. Sabe-se que o desvio padrão populacional de todas as empresas desta região é igual a R$120.000,00. Um pesquisador independente analisou os dados de uma amostra formada por 19 empresas desta região, encontrando um faturamento médio de R$750.000,00. Assumindo nível confiança de 95% (Ztab=±1,96), é possível concordar com a alegação feita pela revista? Resposta: Como Ztab= ± 1,96 (95% deconfiança), o valor de Zcalc= -2,54 não pertence ao intervalo da Ho (-1,96<zcalc < 1,96), portanto está localizado na região de rejeição (RR) que indica a
hipótese nula (Ho) deve ser rejeitada e, assim deverá ser aceita a H1 (μ ≠ R$820.000,00). Assim é possível supor com base nas informações da amostra que a alegação feita pela revista não seja verdadeira.

3-Uma empresa que comercializa banco de dados com informações sobre assinantes de jornais e revistas assegura que a renda média dos assinantes é de, no mínimo, R$850,00. Uma amostra aleatória com 24 pessoas revelou uma média mensal igual à R$ 800,00, com desvio padrão amostral de R$200,00. Estatisticamente é possível concordar com a alegação da empresa? Assuma um nível de confiança de 95%.( dado: ztab = 1,96). Resposta Resposta: tcalc=-1,22, Como ttab= ± 2,064 (95% de confiança – Tabela ANEXO; n-1=23), o valor de tcalc= - 1,22, está localizado está no intervalo delimitado pelos valores tabelados (-2,064< tcalc<+2,064) ,ou seja, está localizado na região de aceitação de Ho indicando que a renda média dos assinantes é de, no mínimo, R$850,00.
nandabhz
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Jun 03, 2012 13:41
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: adm
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D