• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PROBABILIDADE SIMPLES

PROBABILIDADE SIMPLES

Mensagempor gabrielpacito » Ter Mar 06, 2018 01:50

Numa família com 9 filhas, a probabilidade de o décimo filho ser homem é:
a) 50%
b) 70%
c) 80%
d) 90%
e) 25%
gabrielpacito
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Fev 07, 2018 15:29
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: PROBABILIDADE SIMPLES

Mensagempor Gebe » Ter Mar 06, 2018 02:30

Essa é uma questão meramente de conceito, quase uma "pegadinha". As 9 filhas não tem qualuer influencia no nascimento do proximo filho (ao menos para as probabilidades), logo as chances de nascer um filho homem é de 50%.

Serve para mostrar que nem sempre um evento tem influencia em um proximo.
Gebe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 74
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}