• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida 2 Problemas de probabilidade basica

Dúvida 2 Problemas de probabilidade basica

Mensagempor feperessim » Sáb Ago 27, 2016 19:13

Primeiro problema

Em um conjunto de 10.000 indivíduos de uma população, constatou-se que entre 4500 ganham menos de 3 salários mínimos, 4000 entre 3 e 5 (excluso o 5), 1000
entre 5 e 7 e 500 com mais de 7 salários mínimo. Determine a probabilidade de um indivíduo escolhido ao acaso dessa população ganhar:

O meu raciocínio sobre essas questões abaixo foi o seguinte

a) entre 3 e 5 salários mínimos (excluso 5).

4000 e 10000 correspondem a 40%

Então escolhendo um individuo do total, a chance de se obter uma pessoa que ganhe entre 3 e 5 salários mínimo é dada por

1 * \frac{4000}{10000} = 0,4

b) menos que 3 salários mínimos.

45 %

1 * \frac{4500}{10000} = 0,45

c) 5 ou mais salários mínimos.

Entre 5 e 7 - 10 %

1 * \frac{1000}{10000} = 0,1

Mais de 7 - 5%

1 * \frac{500}{10000} = 0,05

P([5,7]) + P((7, \infty) = 0.15 = 15%

d) mais de 7 salários mínimos.

Mais de 7 - 5%

1 * \frac{500}{10000} = 0,05


Quando eu analisava esse problema,cheguei até em pensar em usar o bínomio de Newton. Mas acabei chegando a conclusão de que isso não fazia sentido. Eu gostaria de saber se eu errei algum passo na resolução desse problema.


Segundo Problema

Obs: Para esse problema excluam a possibilidade de haver um empate.

Dois times de futebol, A e B, jogam entre si 6 vezes. Encontre a probabilidade de o time A:

a) Ganhar dois ou três jogos.

b) Ganhar pelo menos um jogo

Para a alternativa a eu usei o binômio de Newton, separei os valores da seguinte forma.


n = 6 Jogos. - número de experimentos aleatórios
K1 = 2 - probabilidade de um evento acontecer k vezes
k2 = 3 - probabilidade de um evento acontecer k vezes
P = 1/2 - Possibilidade de ganhar
q = 1/2 Possibilidade de perder

Calculando para dois jogos usando o binômio de newton o resultado foi: 15/64 = 23,438%


Calculando para três jogos usando o binômio de newton o resultado foi: 20/64 = 31,25%

A probabilidade de ganhar 2 ou 3 jogos

P(k1) + P(k2) = 15/64 + 20/64 <=> 23,438 + 31,25 = 54,688%


Calculando para um jogo usando o binômio de newton o resultado foi: 6/64 = 9,375%


Como os resultados obtidos, eu achei estranho a probabilidade de ganhar 3 jogos ser maior que a probabilidade de ganhar 2 e respectivamente 2 de 1. Eu acho que o correto seria que a probabilidade de ganhar 1 jogo deveria ser maior do que a de ganhar 2 e 3 e assim respectivamente. Com isso não tenho certeza se eu cometi algum erro no caminho.
feperessim
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Ago 27, 2016 18:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ciência da computação
Andamento: cursando

Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D