• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PROBABILIDADE

PROBABILIDADE

Mensagempor Ka_th » Ter Dez 08, 2015 17:06

Olá, tenho muita dificuldade para resolver questões desse tipo:

A prefeitura de certa cidade, ao enviar o carnê do IPTU, constatou que os endereços de 80% de seus contribuintes continuam corretos. Se 10 endereços forem sorteados aleatoriamente, qual é a probabilidade de que exatamente quatro endereços estejam incorretos?

Alguém poderia me ajudar?
Também gostaria de saber se para questões assim eu posso utilizar a "Função de Distribuição de Probabilidade Binomial". Agradeço desde já :)
Ka_th
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Set 11, 2015 22:31
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.