• Anúncio Global
    Respostas
    Exibições
    Última mensagem

probabilidade

probabilidade

Mensagempor SandraRB » Dom Nov 09, 2014 19:43

Em pesquisa na internet encontrei 3 respostas diferentes pra este exercício, a ponto de ficar confusa...
"Dois matemáticos saíram para comer uma pizza. Para decidir quem pagaria a conta, eles resolveram lançar uma moeda 4 vezes: se Não aparecessem duas caras seguidas, Alfredo pagaria a conta, caso contrário Orlando pagaria. Qual a probabilidade de Alfredo pagar a conta?"
Minha resolução:
não haver 2 caras (K) seguidas: kccc, kcck, kckc, ckcc, ckck, cckc, ccck
espaço amostral: 2.2.2.2=16
p= 7/16

Estou certa? Caso esteja errado, me ajude por favor.
SandraRB
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Ago 01, 2014 18:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: probabilidade

Mensagempor DanielFerreira » Qua Nov 12, 2014 21:13

Olá Sandra!

O espaço amostral é dado por:
{kkkk, kkkc, kkck, kckk, kkcc, kcck, kckc, kccc,
cccc, ccck, cckc, ckcc, cckk, ckkc, ckck, ckkk}

Uma vez que, Alfredo irá pagar a conta se não aparecer duas caras seguidas...

Evento: {kckc, kccc, cccc, ccck, cckc, ckcc, ckck}.

Com efeito, \boxed{p = \frac{7}{16}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1641
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: probabilidade

Mensagempor SandraRB » Dom Nov 16, 2014 18:50

danjr5 escreveu:Olá Sandra!

O espaço amostral é dado por:
{kkkk, kkkc, kkck, kckk, kkcc, kcck, kckc, kccc,
cccc, ccck, cckc, ckcc, cckk, ckkc, ckck, ckkk}

Uma vez que, Alfredo irá pagar a conta se não aparecer duas caras seguidas...

Evento: {kckc, kccc, cccc, ccck, cckc, ckcc, ckck}.

Com efeito, \boxed{p = \frac{7}{16}}



Muito obrigada!
SandraRB
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Ago 01, 2014 18:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: probabilidade

Mensagempor -anni- » Seg Out 31, 2016 09:59

{(KKKK)(KKKC)(KKCK)(KCKK)(KKCC)(KCCK)(KCKC)(KCCC)(CCCC)(CCCK)(CCKC)(CKCC)(CCKK)(CKKC)(CKCK)(CKKK)}
Sendo assim ...
p={(KCCK)(KCKC)(KCCC)(CCCC)(CCCK)(CCKC)(CKCC)(CKCK)}=8/16=1/2
Letra "a"
-anni-
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Out 30, 2016 11:12
Formação Escolar: ENSINO MÉDIO
Área/Curso: curso normal
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: