• Anúncio Global
    Respostas
    Exibições
    Última mensagem

probabilidade

probabilidade

Mensagempor SandraRB » Dom Nov 09, 2014 19:43

Em pesquisa na internet encontrei 3 respostas diferentes pra este exercício, a ponto de ficar confusa...
"Dois matemáticos saíram para comer uma pizza. Para decidir quem pagaria a conta, eles resolveram lançar uma moeda 4 vezes: se Não aparecessem duas caras seguidas, Alfredo pagaria a conta, caso contrário Orlando pagaria. Qual a probabilidade de Alfredo pagar a conta?"
Minha resolução:
não haver 2 caras (K) seguidas: kccc, kcck, kckc, ckcc, ckck, cckc, ccck
espaço amostral: 2.2.2.2=16
p= 7/16

Estou certa? Caso esteja errado, me ajude por favor.
SandraRB
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Ago 01, 2014 18:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: probabilidade

Mensagempor DanielFerreira » Qua Nov 12, 2014 21:13

Olá Sandra!

O espaço amostral é dado por:
{kkkk, kkkc, kkck, kckk, kkcc, kcck, kckc, kccc,
cccc, ccck, cckc, ckcc, cckk, ckkc, ckck, ckkk}

Uma vez que, Alfredo irá pagar a conta se não aparecer duas caras seguidas...

Evento: {kckc, kccc, cccc, ccck, cckc, ckcc, ckck}.

Com efeito, \boxed{p = \frac{7}{16}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1630
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: probabilidade

Mensagempor SandraRB » Dom Nov 16, 2014 18:50

danjr5 escreveu:Olá Sandra!

O espaço amostral é dado por:
{kkkk, kkkc, kkck, kckk, kkcc, kcck, kckc, kccc,
cccc, ccck, cckc, ckcc, cckk, ckkc, ckck, ckkk}

Uma vez que, Alfredo irá pagar a conta se não aparecer duas caras seguidas...

Evento: {kckc, kccc, cccc, ccck, cckc, ckcc, ckck}.

Com efeito, \boxed{p = \frac{7}{16}}



Muito obrigada!
SandraRB
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Ago 01, 2014 18:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: probabilidade

Mensagempor -anni- » Seg Out 31, 2016 09:59

{(KKKK)(KKKC)(KKCK)(KCKK)(KKCC)(KCCK)(KCKC)(KCCC)(CCCC)(CCCK)(CCKC)(CKCC)(CCKK)(CKKC)(CKCK)(CKKK)}
Sendo assim ...
p={(KCCK)(KCKC)(KCCC)(CCCC)(CCCK)(CCKC)(CKCC)(CKCK)}=8/16=1/2
Letra "a"
-anni-
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Out 30, 2016 11:12
Formação Escolar: ENSINO MÉDIO
Área/Curso: curso normal
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}


cron