• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Probablidade] variáveis aleatórias

[Probablidade] variáveis aleatórias

Mensagempor 1paulo » Sáb Mai 17, 2014 13:06

Galera se alguém puder me ajudar, estou com muitas duvidas em relação a essas questões.. se alguém responder qualquer uma eu já fico feliz.. Obrigado.

Já tentei de tudo quanto é jeito e não consigo.

O livre é: Introdução a Teoria da Probabilidade Hoel, port stone.

Capítulo 3:

10) Seja X uma variável aleatória geometricamente distribuída com parâmetro p. Seja Y = X se X < M e Y = M se X >= M; isto é, Y = Min(X,M). Determine a densidade de Y.

12) Suponha que uma caixa contém r bolas numeradas de 1 a r. Seleciona-se sem reposição uma amostra aleatória de tamanho n. Seja Y o maio número observado na amostra e Z o menor.
a) Determine a probabilidade P(X<=y)
b) Determine a probabilidade P(Z>=z)

14) Seja X e Y duas variáveis aleatórias independentes com densidade uniforme em {o,1,...,N}. Determine:
a)P(X>=Y);
c)min(X,Y);
d)max(X,Y);
c) |Y - X|.
1paulo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Mai 17, 2014 12:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.