• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade com função do 2° grau

Probabilidade com função do 2° grau

Mensagempor lara_nsantos » Qui Dez 05, 2013 12:38

Considere-se, na parábola que intersecta o eixo oy em y = 16 e tem vértice no ponto
V = (1, 18), os pontos de abscissas ? 3, ? 1, 0, 2 e 5.
Escolhendo-se aleatoriamente um segmento com extremidades em dois desses
pontos, a probabilidade de esse segmento intersectar o eixo das abscissas é igual a:

01) 1/3
02) 3/5
03) 2/3
04) 4/5
05) 5/6
lara_nsantos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Nov 24, 2013 19:35
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.