• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[PROBABILIDADE] Dados

[PROBABILIDADE] Dados

Mensagempor Lidstew » Seg Jul 29, 2013 15:57

Gente, sério, toda vez que alguém faz essa questão dá um resultado diferente. A minha dá 8/9 Gostaria que alguém aqui fizesse e tivesse certeza da resposta :/ (Cálculo explicativo, por favor ): )

|QUESTÃO|
Dois dados são lançados simultaneamente. No final, observa-se as faces superiores.

A) Qual a probabilidade que ocorra uma soma ímpar ou menor que 10?
Lidstew
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Abr 01, 2013 14:10
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [PROBABILIDADE] Dados

Mensagempor Pessoa Estranha » Qua Jul 31, 2013 15:23

Olá. Estou no primeiro ano do curso de matemática e ainda não estudei a parte de probabilidade, mas vou apresentar uma resolução que remete ao que ainda lembro do ensino médio. Se você tem o gabarito, por favor coloque a resposta e certa; e desculpe se a minha resposta estiver errada, porém tenho quase certeza de que é assim:

Observe que quando jogamos dois dados simultaneamente, temos 36 possibilidades, ou seja:
1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

É como uma tabela na qual você consegue visualizar as possibilidades. Por exemplo: temos o dado A e o dado B; se o dado A apresenta, na jogada, o número 1, então, este número virá acompanhado pelo número do dado B, que pode ser 1, 2, 3, 4, 5 ou 6. Daí pode ser: 1+1, 1+2, 1+3, 1+4, 1+5, 1+6.
O mesmo ocorre com as outras faces do dado, totalizando, assim, 36 possibilidades.
Bom, prosseguindo, temos a "regra do ou", na qual somamos as possibilidades e é o que iremos usar aqui.

Assim, a questão pergunta qual é a possibilidade de adquirirmos uma soma tal que seja um número ímpar OU um número menor que 10.
Então:
Observe que a possibilidade de obtermos um número ímpar é de \frac{18}{36}, pois temos 18 possíveis números ímpares em 36 possibilidades (estão sublinhados na "tabela" acima). Veja, agora, que a possibilidade de obtermos um número menor que 10 é de \frac{30}{36}, pois note que temos apenas 6 possíveis números maiores do que 6 e, portanto, 30 menores do que 6.

Assim, aplicando a "regra do ou":

\frac{30}{36}+\frac{18}{36}=\frac{48}{36}=\frac{6.8}{6.6}=\frac{2.4}{2.3}=\frac{4}{3}

(Desculpa se está errado! Envie a resposta correta, por favor).
Talvez você possa ter errado na hora de simplificar as frações.

Até mais.
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [PROBABILIDADE] Dados

Mensagempor Lidstew » Qua Jul 31, 2013 20:48

Obrigada por responder! Adorei como detalhou bem a resposta, mas acho que faltou uma parte da fórmula na sua resposta, que no caso seria a intersecção entre soma ímpar e soma menor que 10! Infelizmente não tenho o gabarito, mas muito obrigada!
Lidstew
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Abr 01, 2013 14:10
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59