por leandroo1986 » Sex Abr 04, 2014 20:31
Uma urna contém 2 bolas brancas e 3 bolas amarelas distinguíveis apenas pela cor. Aleatoriamente, duas bolas serão escolhidas, sucessivamente e sem reposição, e colocadas em uma segunda urna, na qual há apenas uma bola preta também distinta das demais apenas pela cor. Após a transferência das duas bolas para a segunda urna, escolher-se-á, aleatoriamente, uma única bolsa dessa urna. Qual a probabilidade de que, nesse último sorteio, a bolsa escolhida seja amarela?
a) 0,12
b) 0,30
c) 0,40
d) 0,65
e) 0,90
Tentei resolver da seguinte maneira:
Parti do princípio de que, para que no último sorteio a bola escolhida seja a amarela, as duas bolas inseridas na segunda urna devam ser amarelas. Assim:
P (1) -> Que as duas bolas escolhidas, sucessivamente e sem reposição, sejam amarelas:
2/5*1/4 = 2/20 (:2) = 1/10
P (2) -> Que a bola escolhida da segunda urna seja amarela:
2/3
Assim, a probabilidade de que, no último sorteio, a bola escolhida seja amarela é:
1/10*2/3 = 2/30 ou 0,06
-
leandroo1986
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Abr 04, 2014 20:01
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Comunicação Social
- Andamento: cursando
por leandroo1986 » Dom Abr 06, 2014 22:57
Obrigado, Lúcio.
Abraços!
-
leandroo1986
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Abr 04, 2014 20:01
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Comunicação Social
- Andamento: cursando
Voltar para Probabilidade
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- n urnas, x bolas brancas e y bolas pretas...Qstão interessan
por marcosmuscul » Seg Out 28, 2013 17:40
- 0 Respostas
- 1458 Exibições
- Última mensagem por marcosmuscul

Seg Out 28, 2013 17:40
Estatística
-
- Probabilidade - Bolas
por Cleyson007 » Qui Set 22, 2011 12:23
- 3 Respostas
- 2267 Exibições
- Última mensagem por Neperiano

Qui Set 22, 2011 16:21
Estatística
-
- [Probabilidade] Bolas
por Lidstew » Qua Abr 10, 2013 21:40
- 1 Respostas
- 1720 Exibições
- Última mensagem por Rafael16

Qua Abr 10, 2013 22:19
Probabilidade
-
- Análise Combinatória - Bolas em caixas
por angeruzzi » Dom Mai 16, 2010 01:33
- 5 Respostas
- 7451 Exibições
- Última mensagem por Douglasm

Ter Jun 08, 2010 09:33
Estatística
-
- Probabilidade - Bolas pretas e brancas
por gustavowelp » Sáb Jun 26, 2010 11:08
- 1 Respostas
- 1374 Exibições
- Última mensagem por MarceloFantini

Sáb Jun 26, 2010 11:42
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.