• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Probabilidade ] Jogo de futebol

[Probabilidade ] Jogo de futebol

Mensagempor sanleovig » Seg Mai 06, 2013 15:19

A final do Campeonato Paulista de Futebol de 1973 entre Santos e Portuguesa foi decidida nos pênaltis. Após a cobrança de 3 pênaltis por cada time (de um total de 5), o placar estava 2x0 para o Santos quando o árbitro terminou o jogo. Porém, a Portuguesa poderia acertar os dois pênaltis que lhe restavam e o Santos errar seus dois, o que resultaria em empate.
Para compensar o erro, a Federação Paulista de Futebol declarou os dois times campeões nesse ano.
Mas será que essa decisão foi a mais justa?

a) Considerando que a probabilidade de um jogador marcar o gol na cobrança de um pênalti é 50%, qual era a chance de a Portuguesa conseguir empatar a cobrança de pênaltis?
b) De acordo com a FIFA (baseando-se em cobranças de pênalti em jogos oficiais) a probabilidade de um jogador que irá cobrar o pênalti marcar o gol é de 80%. Nesse caso, qual era a probabilidade de a Portuguesa conseguir empatar a cobrança de pênaltis?

Eu resolví desta forma:

Chamando de (e) a probabilidade de empate, (A) as chances de acertar e (E) as chances de errar, temos:

a) P(e) = (AA) / (EEAA) -> P(A) = 2 / 4 -> P(A) = 1 / 2 -> P(A) = 50%

b) Como a probabilidade de acerto representa 80% sobram 20% para erro, então temos:

P(e) = (AA) / (EEAA) -> P(A) = 160 / 200 -> P(e) = 80%

Este meu raciocínio procede?
sanleovig
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mai 05, 2013 19:00
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Probabilidade ] Jogo de futebol

Mensagempor brunoiria » Sex Mai 10, 2013 14:07

Ola sanleovig,
eu pensei deste modo

Sendo B= os penaltis restantes par ambas equipes, e A=conversam dos penaltis da portuguesa e erro do santos.

P(A/B)= \dfrac{P(A\cap B)}{P(B)}= \dfrac{E_s E_s A_p A_p}{E_s  E_s A_p A_p+ A_s E_s A_p A_p + A_s A_s A_p A_p +E_s A_s A_p A_p +\ldots A_s A_s E_p E_p} aqui vc terá que analisar todas as 16 combinações possíveis. como as chances de acerto e erro são iguais cada uma delas é de \dfrac{1}{16}. assim

=\dfrac{E_s E_s A_p A_p}{E_s  E_s A_p A_p+ A_s E_s A_p A_p + A_s A_s A_p A_p +E_s A_s A_p A_p +\ldots A_s A_s E_p E_p}= = \dfrac{\frac{1}{16}}{\frac{1}{16}+\frac{1}{16}+.....+\frac{1}{16}}=\dfrac{\frac{1}{16}}{16\cdot\frac{1}{16}}=\dfrac{1}{16}

na b) vc terá que tomar cuidado pois a prob de acerto não é igual a do erro, mas acho que resolve do mesmo modo que aqui. um livro para consulta pode ser do morgado "probabilidade e análise combinatória" editora sbm, de uma olhada nele. boa sorte
brunoiria
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Jun 23, 2012 10:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic Mat
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.