• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Probabilidade] Problema dos quatro pássaros nos quatro fios

[Probabilidade] Problema dos quatro pássaros nos quatro fios

Mensagempor Alan Christian » Sex Jun 08, 2012 12:43

Pois é gente, tenho um problema de probabilidade ao qual não acho uma resposta que concorde com o resultado do gabarito.
"Quatro pássaros pousam em uma rede de distribuição elétrica que tem quatro fios paralelos. A probabilidade de que em cada fio pouse apenas um
pássaro é ?"
a) 3/32
b) 1/256
c) 1/24
d) 1/4
e) 3/4

Eu tentei resolver da seguinte forma:

1° passo: Construo uma matriz para identificar as possibilidades de organização dos pássaros no espaço.
\begin{pmatrix}
   p1 & p2 & p3 & p4  \\ 
   p5 & p6 & p7 & p8  \\
   p9 & p10 & p11 & p12 \\
   p13 & p14 & p15 & p16
\end{pmatrix}

Em que (p1,p2,p3,p4) por exemplo significaria os pássaros estarem um em cada fio
e (p1,p5,p9,p13) por exemplo significaria os pássaros estarem no mesmo fio.

2° passo: Usando o raciocinio anterior descubro o valor de n(\Omega) que seria:
{A}_{16,4}= \frac{16!}{(16-4)!}= 43680

3° passo: Agora eu tenho que descobrir quantas possibilidades diferentes eu tenho para que cada pássaro esteja num fio diferente.
:-P ________________
____ :$ ___________
________ :-O _______
______________ :party:

Seria 4 passaros contados de 4 em 4 = {A}_{4,4}= 24

Então n(E) = 24

4° passo: Agora é ja definidos n(E) e n(\Omega) é só fazer:

\frac{n(E)}{n(\Omega)} = \frac{1}{1820}

Só que não é esse o resultado da questão...
Obs1. Eu usei arranjo ao invés de combinação porque os pássaros são entidades diferentes entre si, tal como as posições dos pássaros.
Obs2. Eu usei muito LaTeX porque to testando e aprendendo
Obs3. Eu só tenho o ensino médio ( ainda por cima em ensino publico), então cuidado com as respostas XD.

Eu queria saber onde eu errei, se alguém puder me responder ficarei muito grato
Valeu.
Alan Christian
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mai 30, 2012 15:35
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Probabilidade] Problema dos quatro pássaros nos quatro

Mensagempor Neperiano » Seg Jun 25, 2012 18:05

Olá

Cara não sei se é isso, mas pense assim:

Temos 4 passáros certo, cada pássaro pode pousar em 4 fios, logo temos 16 possibilidades de pouso.

Então 4/16 = 1/4.

Conferei ai, se não vou tentar entender de outra forma.

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?