por Alan Christian » Sex Jun 08, 2012 12:43
Pois é gente, tenho um problema de probabilidade ao qual não acho uma resposta que concorde com o resultado do gabarito.
"Quatro pássaros pousam em uma rede de distribuição elétrica que tem quatro fios paralelos. A probabilidade de que em cada fio pouse apenas um
pássaro é ?"
a) 3/32
b) 1/256
c) 1/24
d) 1/4
e) 3/4
Eu tentei resolver da seguinte forma:
1° passo: Construo uma matriz para identificar as possibilidades de organização dos pássaros no espaço.

Em que (p1,p2,p3,p4) por exemplo significaria os pássaros estarem um em cada fio
e (p1,p5,p9,p13) por exemplo significaria os pássaros estarem no mesmo fio.
2° passo: Usando o raciocinio anterior descubro o valor de n(

) que seria:

=

= 43680
3° passo: Agora eu tenho que descobrir quantas possibilidades diferentes eu tenho para que cada pássaro esteja num fio diferente.

________________
____

___________
________

_______
______________

Seria 4 passaros contados de 4 em 4 =

= 24
Então n(E) = 24
4° passo: Agora é ja definidos n(E) e n(

) é só fazer:

=

Só que não é esse o resultado da questão...
Obs1. Eu usei arranjo ao invés de combinação porque os pássaros são entidades diferentes entre si, tal como as posições dos pássaros.
Obs2. Eu usei muito LaTeX porque to testando e aprendendo
Obs3. Eu só tenho o ensino médio ( ainda por cima em ensino publico), então cuidado com as respostas XD.
Eu queria saber onde eu errei, se alguém puder me responder ficarei muito grato
Valeu.
-
Alan Christian
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Mai 30, 2012 15:35
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Neperiano » Seg Jun 25, 2012 18:05
Olá
Cara não sei se é isso, mas pense assim:
Temos 4 passáros certo, cada pássaro pode pousar em 4 fios, logo temos 16 possibilidades de pouso.
Então 4/16 = 1/4.
Conferei ai, se não vou tentar entender de outra forma.
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
Voltar para Probabilidade
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Valor de quatro termos
por Bruhh » Seg Mar 01, 2010 15:11
- 5 Respostas
- 2563 Exibições
- Última mensagem por Cleyson007

Qua Mar 03, 2010 14:06
Matrizes e Determinantes
-
- Problema
por fabio muniz » Qui Out 23, 2008 16:14
- 1 Respostas
- 10604 Exibições
- Última mensagem por admin

Ter Out 28, 2008 17:47
Problemas do Cotidiano
-
- Problema
por Lima » Dom Dez 14, 2008 18:08
- 3 Respostas
- 9588 Exibições
- Última mensagem por blangis

Dom Dez 14, 2008 20:15
Sistemas de Equações
-
- Problema..
por ANDRE RENATO PROFETA » Sex Mar 13, 2009 00:36
- 1 Respostas
- 3229 Exibições
- Última mensagem por Molina

Sex Mar 13, 2009 14:58
Álgebra Elementar
-
- Problema
por ginrj » Qua Jun 03, 2009 19:19
- 3 Respostas
- 4482 Exibições
- Última mensagem por Cleyson007

Dom Jun 07, 2009 11:48
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.