• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.resolv.combinatoria

exerc.resolv.combinatoria

Mensagempor adauto martins » Ter Ago 13, 2019 20:58

(exames de aptidao as escolas superiores-1941-faculdade de engenharia da universidade do porto-portugal)
quantos produtos diferentes pode obter com cinco numeros primos entre si,nao repetindo produto o mesmo factor?
chegava a mesma conclusao se os numeros nao fossem primos entre si?
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1032
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolv.combinatoria

Mensagempor adauto martins » Ter Ago 13, 2019 21:07

soluçao:
sejam a,b,c,d,e tal que mdc(a,b,c,d,e)=1...
tomamos o par (-,-) para o produtos de dois desses numeros,logo:
tomaremos os possiveis primeiros produtos dado por:
(5 poss.,4poss.)\rightarrow 5.4=20 possiveis produtos...
tomaremos os restantes que é dado por (3 poss.,2poss.)\rightarrow 3.2=6 possiveis produtos restantes.
como sao primos entre si,nao poderemos usar o principio multiplicativo,dado que a intersecçao das soluçao devem ser nula.
logo,usaremos o princ. aditivo que nos dara 20+6=26 possiveis produtos.
se os numeros nao sao primos entre,teem fatores comuns o que nos leveria a outra conclusao.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1032
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Análise Combinatória

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.