• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.resolv.combinatoria

exerc.resolv.combinatoria

Mensagempor adauto martins » Qui Ago 01, 2019 19:08

(ete-escola tecnica do exercito-1948)
quantos numeros diferentes de dez algarismos,se podem formar
com os algarismos 3,3,3,4,4,5,6,7,7,7,tendo todos eles o mesmo
final 34475?
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 787
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolv.combinatoria

Mensagempor adauto martins » Qui Ago 01, 2019 19:27

soluçao:
dos 10 dez algarismos 3,3,3,4,4,5,6,7,7,7,ficaremos
com 3,3,6,7,7,pois o numero fixo 34475 tera que estar no final,e
retiramos os numeros 1 num.3,2 num.4,1 num.5 e 1 num.7 da sequencia dada(33...6..7)
entao os possiveis numeros a serem construidos,na 10-upla(-,-,-,-,-,3,4,4,7,5) serao:
da 10-upla(-,-,-,-,-,3,4,4,7,5), com 2!(num.3), 2!(num.7) e 1!(num.6)repetiçoes ;trabalharemos com
a 5-upla(3,3,6,7,7),no qual obteremos:
(5 possib.,4 possib.,3 possib.,2 possib.,1 possib.) que implica,pelo princ.multiplicativo em:
5.4.3.2.1=5!,dividindo pelas repetiçoes(2!(num.3),1!(num.6),2!(num.7),termos:
5!/(2!.1!.2!)=120/4=30...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 787
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Análise Combinatória

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}